购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

4.4 数组属性

NumPy数组的维数称为秩(rank),即轴的数量或数组的维度:一维数组的秩为1,二维数组的秩为2,以此类推。

在NumPy中,每一个线性的数组称为一个轴(axis),也就是维度(dimensions)。例如,二维数组相当于两个一维数组,其中第一个一维数组中的每个元素又是一个一维数组。因此,一维数组就是NumPy中的轴,第一个轴相当于底层数组,第二个轴是底层数组里的数组。轴的数量秩就是数组的维数。很多时候可以这样声明axis:

● 当axis=0时,表示沿着第0轴进行操作,即对每一列进行操作。

● 当axis=1时,表示沿着第1轴进行操作,即对每一行进行操作。

NumPy的数组中比较重要的ndarray对象属性如表4-3所示。

表4-3 ndarray对象属性

下面详细介绍其中常用的4个属性。

(1)ndarray.ndim:用于返回数组的维数,等于秩。

a = np.arange(24)
b = a.reshape(2,4,3)   # 调整其大小
print (a.ndim,b.ndim)   # a表示现在只有一个维度,b表示现在拥有三个维度

输出结果为:1 3。

(2)ndarray.shape:表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即ndim属性(秩)。比如,一个二维数组,其维度表示“行数”和“列数”。比如:

a = np.array([[1,2,3],[4,5,6]])
print (a.shape)

输出结果为:(2, 3)。

ndarray.shape也可用于调整数组大小:

a = np.array([[1,2,3],[4,5,6]])
a.shape =  (3,2)   #调整数组大小
print (a)

输出结果为:

[[1 2]
 [3 4]
 [5 6]]

原来是2行3列,调整后变成3行2列了。

NumPy也提供了reshape函数来调整数组大小,比如:

a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print (b)

输出结果为:

[[1, 2]
 [3, 4]
 [5, 6]]

值得注意的是,ndarray.reshape通常返回的是非拷贝副本,即改变返回后数组的元素,原数组对应元素的值也会改变。

(3)ndarray.itemsize:以字节的形式返回数组中每一个元素的大小。例如,一个元素类型为float64的数组,其itemsize属性值为8(float64占用64位,每个字节长度为8位,所以占用8字节),一个元素类型为complex32的数组,其item属性为4(32/8)。

#数组的dtype为int8(1字节)
x = np.array([1,2,3,4,5], dtype = np.int8)
#数组的dtype 现在为float64(8字节)
y = np.array([1,2,3,4,5], dtype = np.float64)
print (x.itemsize,y.itemsize)

输出结果为:1 8。

(4)ndarray.flags:返回ndarray对象的内存信息,包含表4-4所示的属性。

表4-4 ndarray对象的内存信息

比如:

x = np.array([1,2,3,4,5])
print (x.flags)

输出结果为: eo4Zw92W74CAdzqn+CqXbENn/OFxY5lZyhlR29XbidrvVEOvmfIAaE4ALNf1t8VT

C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
点击中间区域
呼出菜单
上一章
目录
下一章
×