购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1] AMIAR S,KATRIS NJ,BERRY L,et al. Division and adaptation to host environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling[J]. Cell Rep,2020,30(11):3778-3792.

[2] ANDERSON-WHITE BR,IVEY FD,CHENG K,et al. A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii [J]. Cell Microbiol,2011,13(1):18-31.

[3] BARYLYUK K,KORENY L,KE H,et al. A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions[J]. Cell Host Microbe,2020,28(5):752-766.

[4] BERAKI T,HU X,BRONCEL M,et al. Divergent kinase regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole[J]. Proc Natl Acad Sci U S A,2019,116(13):6361-6370.

[5] BERNÁ L,REGO N AND FRANCIA ME. The Elusive Mitochondrial Genomes of Apicomplexa:Where Are We Now?Front Microbiol,2021,12:751775.

[6] BRUEY JM,DUCASSE C,BONNIAUD P,et al. Hsp27 negatively regulates cell death by interacting with cytochrome C[J]. Nat Cell Biol,2000,2(9):645-652.

[7] CHE FY,MADRID-ALISTE C,BURD B,et al. Comprehensive proteomic analysis of membrane proteins in Toxoplasma gondii [J]. Mol Cell Proteomics,2011,10(1):M110.000745.

[8] CHEN AL,KIM EW,TOH JY,et al. Novel components of the Toxoplasma inner membrane complex revealed by BioID[J]. mBio,2015,6(1):e02357-e02414.

[9] CHEN AL,MOON AS,BELL HN,et al. Novel insights into the composition and function of the Toxoplasma IMC sutures[J]. Cell Microbiol,2017,19(4):10.1111/cmi.12678.

[10] CLOUGH B,FRICKEL EM. The Toxoplasma parasitophorous vacuole:An evolving host-parasite frontier[J]. Trends Parasitol,2017,33(6):473-488.

[11] COPPENS I,SINAI AP,JOINER KA. Toxoplasma gondii exploits host low-density lipoprotein receptor-mediated endocytosis for cholesterol acquisition[J]. J Cell Biol,2000,149(1):167-180.

[12] FOX BA,ROMMEREIM LM,GUEVARA RB,et al. The Toxoplasma gondii rhoptry kinome is essential for chronic infection[J]. mBio,2016,7(3):e00193-e00216.

[13] FRENAL K,KEMP LE,SOLDATI-FAVRE D. Emerging roles for protein S-palmitoylation in Toxoplasma biology[J]. Int J Parasitol,2014,44(2):121-131.

[14] FRITZ HM,BOWYER PW,BOGYO M,et al. Proteomic analysis of fractionated Toxoplasma oocysts reveals clues to their environmental resistance[J]. PLoS One,2012,7(1):e29955.

[15] GARRIDO C,SCHMITT E,CANDÉ  C,et al. HSP27 and HSP70:potentially oncogenic apoptosis inhibitors[J]. Cell Cycle,2003,2(6):579-584.

[16] GARFOOT AL,WILSON GM,COON JJ,et al. Proteomic and transcriptomic analyses of early and late-chronic Toxoplasma gondii infection shows novel and stage specific transcripts[J]. BMC Genomics,2019,20:859.

[17] GOMEZ DE LEÓN CT,DIAZ MARTIN RD,MENDOZA HERNANDEZ G,et al. Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites[J]. J Proteomics,2014,111:86-99.

[18] HARDING CR,EGARTER S,GOW M,et al. Gliding associated proteins play essential roles during the formation of the inner membrane complex of Toxoplasma gondii [J]. PLoS Pathog,2016,12(2):e1005403.

[19] HE JJ,MA J,ELSHEIKHA HM,et al. Proteomic profiling of mouse liver following acute Toxoplasma gondii infection[J]. PLoS One,2016,11(3):e0152022.

[20] HE JJ,MA J,WANG JL,et al. iTRAQ-based quantitative proteomics analysis identifies host pathways modulated during Toxoplasma gondii infection in swine[J]. Microorganisms,2020,8(4):518.

[21] HU K,ROOS DS,MURRAY JM. A novel polymer of tubulin forms the conoid of Toxoplasma gondii [J]. J Cell Biol,2002,156(6):1039-1050.

[22] HU K,JOHNSON J,FLORENS L,et al. Cytoskeletal components of an invasion machine--the apical complex of Toxoplasma gondii [J]. PLoS Pathog,2006,2(2):e13.

[23] JONES NG,WANG Q,SIBLEY LD. Secreted protein kinases regulate cyst burden during chronic toxoplasmosis[J]. Cell Microbiol,2017,19(2):10.1111/cmi.12651.

[24] KRISHNAN A,KLOEHN J,LUNGHI M,et al. Functional and computational genomics reveal unprecedented flexibility in stage-specific Toxoplasma metabolism[J]. Cell Host Microbe,2020,27(2):290-306.

[25] LONG S,ANTHONY B,DREWRY L,et al. A conserved ankyrin repeat-containing protein regulates conoid stability,motility and cell invasion in Toxoplasma gondii [J]. Nat Commun,2017a,8:2236.

[26] LONG S,BROWN K,DREWRY L,et al. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii [J]. PLoS Pathog,2017b,13(5):e1006379.

[27] LV L,WANG Y,FENG W,et al. iTRAQ-based differential proteomic analysis in Mongolian gerbil brains chronically infected with Toxoplasma gondii [J]. J Proteomics,2017,160:74-83.

[28] MUELLER C,KLAGES N,JACOT D,et al. The Toxoplasma protein ARO mediates the apical positioning of rhoptry organelles,a prerequisite for host cell invasion[J]. Cell Host Microbe,2013,13(3):289-301.

[29] MULVEY CM,BRECKELS LM,GELADAKI A,et al. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome[J]. Nat Protoc,2017,12(6):1110-1135.

[30] NADIPURAM SM,KIM EW,VASHISHT AA,et al. In vivo biotinylation of the Toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis[J]. mBio,2016,7(4):e00808-e00816.

[31] NAGAYASU E,HWANG YC,LIU J,et al. Loss of a doublecortin(DCX)-domain protein causes structural defects in a tubulin-based organelle of Toxoplasma gondii and impairs host-cell invasion[J]. Mol Biol Cell,2017,28(3):411-428.

[32] NELSON MM,JONES AR,CARMEN JC,et al. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondi i [J]. Infect Immun,2008,76(2):828-844.

[33] NIE LB,LIANG QL,DU R,et al. Global proteomic analysis of lysine malonylation in Toxoplasma gondii [J]. Front Microbiol,2020,11:776.

[34] PAN M,LI M,LI L,et al. Identification of novel dense-granule proteins in Toxoplasma gondii by two proximitybased biotinylation approaches[J]. J Proteome Res,2019,18(1):319-330.

[35] PINO P,FOTH BJ,KWOK LY,et al. Dual targeting of antioxidant and metabolic enzymes to the mitochondrion and the apicoplast of Toxoplasma gondii [J]. PLoS Pathog,2007,3(8):e115.

[36] POSSENTI A,CHERCHI S,BERTUCCINI L,et al. Molecular characterisation of a novel family of cysteine-rich proteins of Toxoplasma gondii and ultrastructural evidence of oocyst wall localization[J]. Int J Parasitol,2010,40(14):1639-1649.

[37] PRASAD A,MASTUD P,PATANKAR S. Dually localized proteins found in both the apicoplast and mitochondrion utilize the Golgi-dependent pathway for apicoplast targeting in Toxoplasma gondii [J]. Biol Cell,2021,113(1):58-78.

[38] RAMÍREZ-FLORES CJ,CRUZ-MIRÓN R,MONDRAGÓN-CASTELÁN ME,et al. Proteomic and structural characterization of self-assembled vesicles from excretion/secretion products of Toxoplasma gondii [J]. J Proteomics,2019,208:103490.

[39] SAHU A,KUMAR S,SREENIVASAMURTHY SK,et al. Host response profile of human brain proteome in Toxoplasma encephalitis co-infected with HIV[J]. Clin Proteomics,2014,11:39.

[40] SALMAN D,OKUDA LH,UENO A,et al. Evaluation of novel oocyst wall protein candidates of Toxoplasma gondii [J]. Parasitol Int,2017,66(5):643-651.

[41] SAMAVARCHI-TEHRANI P,SAMSON R,GINGRAS AC. Proximity dependent biotinylation:Key enzymes and adaptation to proteomics approaches[J]. Mol Cell Proteomics,2020,19(5):757-773.

[42] SEIDI A,MUELLNER-WONG LS,RAJENDRAN E,et al. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome C oxidase[J]. eLife,2018,7:e38131.

[43] SUAREZ C,LENTINI G,RAMASWAMY R,et al. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites[J]. Nat Commun,2019,10:4041.

[44] TJHIN ET,HAYWARD JA,MCFADDEN GI,et al. Characterization of the apicoplast-localized enzyme TgUroD in Toxoplasma gondii reveals a key role of the apicoplast in heme biosynthesis[J]. J Biol Chem,2020,295(6):1539-1550.

[45] WALLER RF,KEELING PJ,DONALD RG,et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum [J]. Proc Natl Acad Sci U S A,1998,95(21):12352-12357.

[46] WANG ZX,ZHOU CX,ELSHEIKHA HM,et al. Proteomic differences between developmental stages of Toxoplasma gondii revealed by iTRAQ-based quantitative proteomics[J]. Front Microbiol,2017,8:985.

[47] WANG ZX,ZHOU CX,CALDERÓN-MANTILLA G,et al. iTRAQ-based global phosphoproteomics reveals novel molecular differences between Toxoplasma gondii strains of different genotypes[J]. Front Cell Infect Microbiol,2019a,9:307.

[48] WANG ZX,HU RS,ZHOU CX,et al. Label-free quantitative acetylome analysis reveals Toxoplasma gondii genotypespecific acetylomic signatures[J]. Microorganisms,2019b,7(11):510.

[49] YIN D,JIANG N,ZHANG Y,et al. Global lysine crotonylation and 2-hydroxyisobutyrylation in phenotypically different Toxoplasma gond parasites[J]. Mol Cell Proteomics,2019,18(11):2207-2224.

[50] ZHANG D,SUN X,REN L,et al. Proteomic profiling of human decidual immune proteins during Toxoplasma gondii infection[J]. J Proteomics,2018,186:28-37.

[51] ZHOU CX,ZHU XQ,ELSHEIKHA HM,et al. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation[J]. J Proteomics,2016,148:12-19.

[52] ZHOU DH,YUAN ZG,ZHAO FR,et al. Modulation of mouse macrophage proteome induced by Toxoplasma gondii tachyzoites in vivo [J]. Parasitol Res,2011,109(6):1637-1646.

[53] ZHOU DH,ZHAO FR,NISBET AJ,et al . Comparative proteomic analysis of different Toxoplasma gondii genotypes by two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry[J]. Electrophoresis,2014,35(4):533-545.

[54] ZHOU H,ZHAO Q,DAS SINGLA L,et al. Differential proteomic profiles from distinct Toxoplasma gondii strains revealed by 2D-difference gel electrophoresis[J]. Exp Parasitol,2013,133(4):376-382. DW58L9WRQkp+eJ7KnlPC+GzeUaBGlFd9DAIxBRt7M5u9h9yKFVTHcZHC38gjtuZG

点击中间区域
呼出菜单
上一章
目录
下一章
×