1.Romero-García J, Biarnés X, Planas A. Essential mycoplasma glycolipid synthase adheres to the cell membrane by means of an amphipathic helix. Sci Rep, 2019, 9(1):7085.
2.Huang J, Zhu H, Wang J, et al. Fructose-1, 6-bisphosphate aldolase is involved in Mycoplasma bovis colonization as a fibronectin-binding adhesin. Res Vet Sci, 2019, 124:70-78.
3.Deng X, Dai P, Yu M, et al. Cyclophilin A is the potential receptor of the Mycoplasma genitalium adhesion protein. Int J Med Microbiol, 2018, 308(3):405-412.
4.Pollack J D, Williams M V, McElhaney R N. The comparative metabolism of the mollicutes(mycoplasmas):the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function. Crit Rev Microbiol, 1997, 23(4):269-354.
5.Chen L S, Li C, You X X, et al. The mpn668 gene of Mycoplasma pneumoniae encodes a novel organic hydroperoxide resistance protein. Int J Med Microbiol, 2018, 308(7):776-783.
6.Ruepp A, Soppa J. Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium ):genes, gene products, and transcripts of the arcRACB gene cluster. J Bacteriol, 1996, 178(16):4942-4947.
7.Fraser C M, Gocayne J D, White O, et al. The minimal gene complement of Mycoplasma genitalium . Science, 1995, 270(5235):397-403.
8.Somani R R, Chaskar P K. Arginine Deiminase Enzyme Evolving as a Potential Antitumor Agent. Mini Rev Med Chem, 2018, 18(4):363-368.
9.Miles R J. Catabolism in mollicutes. J Gen Microbiol, 1992, 138(9):1773-1783.
10.Blötz C, Stülke J. Glycerol metabolism and its implication in virulence in Mycoplasma. FEMS Microbiol Rev, 2017, 41(5):640-652.
11.Kamminga T, Slagman S J, Bijlsma J J E, et al. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate. Biotechnol Bioeng, 2017, 114(10):2339-2347.
12.Mushegian A R, Koonin E V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93:10268-10273.
13.Koonin E V. How many genes can make a cell:the minimal-gene-set concept. Annu Rev Genomics Hum Genet, 2000, 1:99-116.
14.Glass J I, Assad-Garcia N, Alperovich N, et al. J. C. Venter. Essential genes of a minimal bacterium. Proceedings of the National Academy of Sciences of the United States of Americ, 2006, 103:425-430.
15.Lartigue C, Glass J I, Alperovich N, et al. Genome transplantation in bacteria:changing one species to another. Science, 2007, 317:632-638.
16.Gibson D G, Benders G A, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 2008, 319:1215-1220.
17.Lartigue C, Vashee S, Algire M A, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 2009, 325:1693-1696.
18.Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329:52-56.
19.Hutchison C A 3 rd , Chuang R Y, Noskov V N, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351:aad6253.