购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1]马国栋. 电线电缆载流量[M]. 北京:中国电力出版社, 2003.

[2]刘子玉. 电气绝缘结构设计原理:上册[M]. 北京:机械工业出版社, 1981.

[3]史传卿. 电力电缆安装运行技术问答[M]. 北京:中国电力出版社, 2002.

[4]海因豪尔德, 斯杜伯, 门汉文, 等. 电力电缆及电线[M]. 北京:中国电力出版社, 2001.

[5]张裕恒. 超导物理[M]. 合肥:中国科学技术大学出版社, 2009.

[6]王银顺. 超导电力技术基础[M]. 北京:科学出版社, 2011.

[7]信赢. 超导电缆[M]. 北京:中国电力出版社, 2013.

[8]周廉. 中国高温超导材料及应用发展战略研究[M]. 北京:化学工业出版社, 2008.

[9]王秋良. 高磁场超导磁体科学[M]. 北京:科学出版社, 2008.

[10]时东陆. 高温超导应用研究[M]. 上海:上海科学技术出版社, 2008.

[11]南和礼. 超导磁体设计基础[M]. 北京:国防工业出版社, 2007.

[12]马衍伟. 超导材料科学与技术[M]. 北京:科学出版社, 2022.

[13]中国工程院化工、冶金与材料工程学部, 中国材料研究学会. 中国新材料产业发展报告(2020)[M]. 北京:化学工业出版社, 2020.

[14]蔡传兵, 杨召, 郭艳群. 新型电力传输材料——REBaCuO高温超导涂层导体[J]. 物理, 2020(11):747-754.

[15]常豪然, 郭威, 黄磊, 等. 高温超导材料研究进展[J]. 湖北大学学报:自然科学版, 2023, 45(1):89-96.

[16]樊帆, 张现平, 徐中堂, 等. 铁基超导薄膜研究进展[J]. 科学通报, 2021, 66(19):2416-2429.

[17]金利华, 李成山, 郝清滨. Bi-2212线材的制备技术[J]. 物理, 2020, 49(11):8.

[18]李景会. Bi2223超导带材交流损耗研究[D]. 沈阳:东北大学, 2004.

[19]刘丹, 叶新羽. 有机超导材料的研究进展[J]. 电工材料, 2020(2):3-4, 8.

[20]马衍伟. 面向高场应用的铁基超导材料[J]. 物理学进展, 2017, 37(1):12.

[21]马衍伟. 实用化超导材料研究进展与展望[J]. 物理, 2015, 44(10):10.

[22]佚名. 深圳用上我国自研的首条新型超导电缆[J]. 机床与液压, 2021, 49(20):27.

[23]佚名. 世界首条35kW公里级超导电缆示范工程在沪正式投运[J]. 上海节能, 2021, (12):1308.

[24]魏东, 宗曦华, 徐操, 等. 35kV2000A低温绝缘高温超导电力电缆示范工程[J]. 电线电缆, 2015(1):4.

[25]肖琳. 高Tc超导陶瓷材料研究现状[J]. 国际科技交流, 1988(08):25-29.

[26]应启良, 黄崇祺, 魏东. 高温超导电缆在城市地下输电系统应用的可行性研究[J]. 低温物理学报, 2003, 25(z2):369-376.

[27]张平祥, 闫果, 冯建情, 等. 强电用超导材料的发展现状与展望[J]. 中国工程科学, 2023, 25(1):60-67.

[28]张现平, 马衍伟. 铁基超导线带材研究现状及展望[J]. 物理, 2020, 49(11):737-746.

[29]张赵龙. 高压下富氢化合物ErHn的结构稳定性和超导电性的第一性原理研究[D]. 赣州:江西理工大学, 2023.

[30]张智勇, 宗曦华, 韩云武,等. 冷绝缘高温超导电缆用绝缘材料PPLP液氮浸渍击穿场强特性研究[J]. 稀有金属材料与工程, 2008, 37(A04):402-403.

[31]郑健, 宗曦华, 韩云武. 超导电缆在电网工程中的应用[J]. 低温与超导, 2020, 48(11):27-31, 50.

[32]宗曦华. 感应屏蔽型高温超导故障电流限制器的研究[D]. 沈阳:东北大学, 2005.

[33]PELLOQUIN D, HERVIEU M, MICHEL C, et al. A 94K Hg-based superconductor with a“1212”structure Hg0.5Bi0.5Sr2Ca1-xRxCu2O6+δ(R=Nd, Y, Pr)[J]. Physica C:Superconductivity, 1993.

[34]ISHIGURO T, ANZAI H.Organic superconductors:present status and clue to future[J]. Molecular Crystals and Liquid Crystals, 1989, 171(1):333-342.

[35]JAMES M, DOUG F, YUAN J, et al. Development and Demonstration of a Fault Current Limiting HTS Cable to be Installed in the Con Edison Grid[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3):1740.

[36]JÉROME D, MAZAUD A, RIBAULT M, et al.Superconductivity in a synthetic organic conductor(TMTSF)2PF 6[J]. Journal de Physique Lettres, 1980, 41(4):95-98.

[37]JIANG J, BRADFORD G, HOSSAIN S I, et al. High-performance Bi-2212 round wires made with recent powders[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5):1-5.

[38]LEE C, SON H, WON Y, et al. Progress of the first commercial project of high-temperature superconducting cables by KEPCO in Korea[J]. Superconductor Science and Technology,2020, 33(4):044006.

[39]LI X, HUANG X, CHEN W, et al.New Cage-Like Cerium Trihydride Stabilized at Ambient Conditions[J]. 中国化学会会刊(英文), 2022, 4(3):7.

[40]LITTLE W A. Possibility of synthesizing an organic superconductor[J]. Physical Review, 1964, 134(6A):A1416.

[41]LIU D, ZHANG W, MOU D, et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor[J]. Nature Communications, 2012, 3(1):931.

[42]LU C, CHEN C.Indentation-strain stiffening in tungsten nitrides:Mechanisms and implications[J]. Physical Review Materials, 2020, 4(4):043402.

[43]MACMANUS-DRISCOLL J L, WIMBUSH S C. Processing and application of high-temperature superconducting coated conductors[J]. Nature Reviews Materials, 2021, 6(7):587-604.

[44]MITCHELL J E, HILLESHEIM D A, BRIDGES C A, et al. Optimization of a non-arsenic iron-based superconductor for wire fabrication[J].Superconductor Science and Technology, 2015, 28(4):045018.

[45]NAGAMATSU J, NAKAGAWA N, MURANAKA T, et al. Superconductivity at 39 K in magnesium diboride[J]. Nature, 2001, 410(6824):63-64.

[46]Progress and Status of a 2G HTS Power Cable to Be Installed in the Long Island Power Authority(LIPA)Grid[J].IEEE Transactions on Applied Superconductivity, 2011, 21(3):961-966.

[47]PYON S, MIYAWAKI D, VESHCHUNOV I, et al. Fabrication and characterization of CaKFe4As4 round wires sintered at high pressure[J]. Applied Physics Express, 2018, 11(12):123101.

[48]RYU C, JANG H, CHOI C, et al. Current status of demonstration and comercialization of HTS cable system in grid in Korea[C]//2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices(ASEMD). IEEE, 2013.

[49]SAITO G, URAYAMA H, YAMOCHI H, et al. Chemical and physical properties of a new ambient pressure organic superconductor with Tc higher than 10K[J]. Synthetic Metals, 1988, 27(1-2):A331-A340.

[50]SCHON J H, KLOC C, BATLOGG B. High-temperature superconductivity in lattice-expanded C60[J]. Science, 2001, 293(5539):2432-2434.

[51]SHEN T, FAJARDO L G G. Superconducting accelerator magnets based on high-temperature superconducting Bi-2212 round wires[J]. Instruments, 2020, 4(2):17.

[52]SHENG Z Z, HERMANN A M, EL ALI A, et al. Superconductivity at 90 K in the Tl-Ba-Cu-O system[J].Physical Review Letters, 1988, 60(10):937-940.

[53]SOHN S H. Installation and Power Grid Demonstration of a 22.9 kV, 50 MVA, High Temperature Superconducting Cable for KEPCO[J].IEEE Transactions on Applied Superconductivity, 2012, 22(3):5800804-5800804.

[54]STEGLICH F, AARTS J, BREDL C D, et al. Superconductivity in the presence of strong pauli paramagnetism:CeCu2Si 2[J]. Physical Review Letters, 1979, 43(25):1892.

[55]UGLIETTI D. A review of commercial high temperature superconducting materials for large magnets:from wires and tapes to cables and conductors[J]. Superconductor Science and Technology, 2019, 32(5):053001.

[56]WILLIAMS J M, KINI A M, WANG H H, et al. From semiconductor-semiconductor transition(42 K)to the highest-Tc organic superconductor. kappa. -(ET)2Cu[N(CN)2]Cl(Tc=12.5 K)[J]. Inorganic Chemistry, 1990, 29(18):3272-3274.

[57]YANG B M, KANG J, LEE S, et al.Qualification Test of a 80 kV 500 MW HTS DC Cable for Applying into Real Grid[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3):1-1.

[58]YAO C, MA Y. Superconducting materials:Challenges and opportunities for large-scale applications[J]. iScience, 2021, 24(6).

[59]YUAN P, HAN J, CHENG P, et al. Emergence of exchange bias field in FeS superconductor with cobalt-doping[J]. Journal of Physics:Condensed Matter, 2021, 33(33):335601.

[60]YUMURA H, ASHIBE Y, ITOH H, et al. Phase Ⅱ of the Albany HTS Cable Project[J]. IEEE Trans. on Appl. super, 2009, 19(3):1698-1701.

[61]YUMURA H, ASHIBE Y, OHYA M, et al.Update of YOKOHAMA HTS Cable Project[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3):5402306-5402306.

[62]ZHANG H, SUO H, WANG L, et al. Database of the effect of stabilizer on the resistivity and thermal conductivity of 20 different commercial REBCO tapes[J]. Superconductor Science and Technology, 2022, 35(4):045016.

[63]ALLAIS A, WEST B, FRENTZAS F, et al. Recent superconducting cable installation in Chicago paves the way for a resilient electric grid(REG)[C]//27th International Conference on Electricity Distribution(CIRED 2023). IET, 2023, 2023:2793-2799.

[64]黄雅熙, 朱婷婷, 冷迪, 等. 深圳用上我国自研的首条新型超导电缆[N]. 科技日报, 2021-10-13(5).

[65]ZONG X H, HAN Y W, HUANG C Q. Introduction of 35-kV kilometer-scale high-temperature superconducting cable demonstration project in Shanghai[J]. Superconductivity, 2022, 2:100008.

[1] Pem56MfMtCcpBlZl1dSqjYAQ9sU7Qv4FStyCmtcLsqhDdmZoqzTj/0kD6lDupvKY

点击中间区域
呼出菜单
上一章
目录
下一章
×