购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1] SERIES M. IMT Vision–framework and overall objectives of the future development of IMT for 2020 and beyond[R]. Geneva: ITU-R, 2015.

[2] IMT-2020(5G)推进组. 5G愿景与需求白皮书[R]. Geneva: ITU-R, 2014.

[3] YOU X H, WANG C X, HUANG J, et al. Towards 6G wireless communication networks:vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2020, 64(1): 1-74.

[4] 尤肖虎,潘志文,高西奇,等. 5G移动通信发展趋势与若干关键技术[J]. 中国科学:信息科学,2014, 44(5): 551-563.

[5] SUTTON G J, ZENG J, LIU R P, et al. Enabling technologies for ultra-reliable and low latency communications: from PHY and MAC layer perspectives[J]. IEEE Communications Surveys and Tutorials, 2019, 21(3): 2488-2524.

[6] ZHANG T K, ZHAO J J, AN L, et al. Energy efficiency of base station deployment in ultra dense HetNets: a stochastic geometry analysis[J]. IEEE Wireless Communications Letters, 2016, 5(2): 184-187.

[7] AGIWAL M, ROY A, SAXENA N. Next generation 5G wireless networks: a comprehensive survey[J]. IEEE Communications Surveys and Tutorials, 2016, 18(3): 1617-1655.

[8] GOTSIS A, STEFANATOS S, ALEXIOU A. UltraDense networks: the new wireless frontier for enabling 5G access[J]. IEEE Vehicular Technology Magazine, 2016, 11(2): 71-78.

[9] CHEN S Z, QIN F, HU B, et al. User-centric ultra-dense networks for 5G: challenges, methodologies, and directions[J]. IEEE Wireless Communications, 2016, 23(2): 78-85.

[10] SABHARWAL A, SCHNITER P, GUO D N, et al. In-band full-duplex wireless: challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9):1637-1652.

[11] LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186-195.

[12] LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742-758.

[13] 聂衡,赵慧玲,毛聪杰. 5G核心网关键技术研究[J]. 移动通信,2019, 43(1): 2-6, 14.

[14] FUTURE FORUM. 5G Whitepaper v2.0[R]. Beijing: Future Forum, 2015.

[15] 胡金泉. 5G系统的关键技术及其国内外发展现状[J]. 电信快报,2017(1): 10-14.

[16] 张长青. 面向5G 的非正交多址接入技术(NOMA)浅析[J]. 邮电设计技术,2015(11):49-53.

[17] LIU G, WANG Z Q, HU J W, et al. Cooperative NOMA broadcasting/multicasting for low-latency and high-reliability 5G cellular V2X communications[J]. IEEE Internet of Things Journal, 2019, 6(5): 7828-7838.

[18] MOUNCHILI S, HAMOUDA S. Pairing distance resolution and power control for massive connectivity improvement in NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4093-4103.

[19] DING J F, CAI J. Two-side coalitional matching approach for joint MIMO-NOMA clustering and BS selection in multi-cell MIMO-NOMA systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2006-2021.

[20] SHIRVANIMOGHADDAM M, DOHLER M, JOHNSON S J. Massive non-orthogonal multiple access for cellular IoT: potentials and limitations[J]. IEEE Communications Magazine, 2017, 55(9): 55-61.

[21] ABBAS R, SHIRVANIMOGHADDAM M, LI Y H, et al. On the performance of massive grant-free NOMA[C]//Proceedings of 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications. Piscataway: IEEE Press, 2017: 1-6.

[22] DI B Y, SONG L Y, LI Y H, et al. V2X meets NOMA: non-orthogonal multiple access for 5G-enabled vehicular networks[J]. IEEE Wireless Communications, 2017, 24(6): 14-21.

[23] 3GPP. Discussion on multiple access schemes for URLLC[R]. [S.l.]: 3GPP, 2016.

[24] 3GPP. Ultra-reliability with low-latency support in 5G new radio interface[R]. [S.l.]: 3GPP, 2016.

[25] 3GPP. Overview of non-orthogonal multiple access for 5G[R]. [S.l.]: 3GPP, 2016.

[26] 3GPP. Ultra-low latency scheduling-based UL access[R]. [S.l.]: 3GPP, 2016.

[27] 3GPP. Uplink multiple access schemes for NR[R]. [S.l.]: 3GPP, 2016.

[28] 3GPP. Discussion on multiple access for UL mMTC[R]. [S.l.]: 3GPP, 2016.

[29] 3GPP. Initial views and evaluation results on non-orthogonal multiple access for NR[R]. [S.l.]:3GPP, 2016.

[30] 3GPP. Usage scenarios of non-orthogonal multiple access[R]. [S.l.]: 3GPP, 2016.

[31] GEORGAKOPOULOS P, AKHTAR T, MAVROKEFALIDIS C, et al. Coalition formation games for improved cell-edge user service in downlink NOMA and MU-MIMO small cell systems[J]. IEEE Access, 2021, 9: 118484-118501.

[32] ZENG J, LYU T J, NI W, et al. Ensuring max–min fairness of UL SIMO-NOMA: a rate splitting approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11):11080-11093.

[33] ZHANG D, LIU Y W, DING Z G, et al. Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G[J]. IEEE Transactions on Communications, 2017, 65(11): 4777-4790.

[34] ZENG M, HAO W M, DOBRE O A, et al. Energy-efficient power allocation in uplink mmWave massive MIMO with NOMA[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3000-3004.

[35] MU H, MA Z, ALHAJI M, et al. A fixed low complexity message pass algorithm detector for up-link SCMA system[J]. IEEE Wireless Communications Letters, 2015, 4(6): 585-588.

[36] WU Y Q, ZHANG S Q, CHEN Y. Iterative multiuser receiver in sparse code multiple access systems[C]//Proceedings of 2015 IEEE International Conference on Communications. Piscataway: IEEE Press, 2015: 2918-2923.

[37] SCHUH F, HUBER J B. Punctured vs. multidimensional TCM—a comparison w.r.t. complexity[C]//Proceedings of 2014 IEEE Globecom Workshops. Piscataway: IEEE Press, 2014: 1408-1413.

[38] DING Z G, SCHOBER R, POOR H V. A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4438-4454.

[39] 张海波,陶小方,刘开健. 面向非正交多址的车联网中资源优化方案[J]. 计算机工程与应用,2022, 58(6): 103-109.

[40] 徐朝农,吴建雄,徐勇军. 时延有界的 PD-NOMA 物联网高可靠接入算法[J]. 通信学报,2020, 41(9): 210-221. 9uBAywr9Xl7zLYy2ak+gsymDjpYhPdbRBfe3JQn1izUttzV/iSpbP9yfNBNV+/9Z

点击中间区域
呼出菜单
上一章
目录
下一章
×