购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

5.9 结论

目前收集的数据表明,某些细胞机制参与了硅藻形态发生的控制。一般情况如下所示。首先,在细胞被肌动蛋白丝环隔开后 [56] ,微管中心向形成SDV的位置移动以控制其对称性。SDV的起源仍有争议,但它与微管中心的联系似乎在形态发生的起始中起着重要作用。在形态发生的某些阶段,细胞骨架(具有微管网络和肌动蛋白丝的微管中心)通过其成分的相互作用来控制SDV的准确位置、形成瓣膜的形状,以及可能的精细结构。SDV由可能依赖于微管的囊泡运输提供 [61] 。微管还可以确定水通道蛋白分子的特定模式,这些模式可以去除二氧化硅聚合产生的多余水分 [74] ,或控制参与硅化作用的其他蛋白质或有机化合物的位置 [75] 。硅质囊膜和SDV含量控制微形态发生,即生化硅化本身。

当在实验中将变化引入这些机制时,它们会导致形成不同的硅质结构,因此在进化过程中有些相似的变化应该创造了当前的硅藻多样性。例如,在硅藻进化早期,环带相关基因的可能突变可能是硅藻类分离的原因,因为环带结构决定了瓣膜的形状和对称性。另一方面,调节细胞骨架和囊泡运输的蛋白质突变可能会导致瓣膜更精细的模式发生变化。

因此,硅藻形态发生背后的细胞机制大多已确定,但仍有必要检测控制硅藻中物种特异性形态发生的分子遗传机制。

参考文献

[1]Hamm, C.E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K., et al. (2003). Architecture and material properties of diatom shells provide effective mechanical protection, Nature, 421(6925), 841-843.

[2]Edgar, L.A., Pickett-Heaps, J. (1983). Mucilage secretions of moving diatoms, Protoplasma, 118(1), 44-48.

[3]Higgins, M.J., Molino, P., Mulvaney, P., Wetherbee, R. (2003). The structure and nanomechanical properties of the adhesive mucilage that mediates diatom-substratum adhesion and motility, J. Phycol., 39(6), 1181-1193.

[4]Davey, M.C., Crawford, R.M. (1986). Filament formation in the diatom Melosira granulata, J. Phycol. 22(2), 144-150.

[5]Bedoshvili, Ye., Bondarenko, N., Sakirko, M., Khanayev, I., Likhoshvay, Ye. (2007). The change in the length of colonies of the planktonic diatom Aulacoseira baicalensis in various stages of the annual cycle in Lake Baikal, Hydrob. J. 43(5), 81-89.

[6]Boje, R., Elbrächter, M. (1978). On the Ecological Significance of Thalassiosira partheneia in the Northwest African Upwelling Area. In In Upwelling Ecosystems. (eds.).R Boje and M Tomczak. Berlin, Heidelberg: Springer.

[7]Popovskaya, G., Genkal, S., Likhoshway, Ye. (2016). Diatoms of the plankton of Lake Baikal: Atlas and Key. Novosibirsk, Nauka.

[8]Reimann, B.E. (1964). Deposition of silica inside a diatom cell, Exp. Cell Res., 34, 605-608.

[9]Mann, D.G. (1984). An ontogenetic approach to diatom systematics. In Proceedings of the 7th International Diatom Symposium. (ed.). D.G Mann. Koenigstein, Germany: O. Koeltz. pp.113-144.

[10]Pickett-Heaps, J.D., Schmid, A.-M., Edgar, L. (1990). The cell biology of diatom valve formation. In: Progress in phycological research, Vol. 7. (eds.)., F.E Round and D.J Chapman. Biopress, Bristol.

[11]Round, F., Crawford, R., Mann, D. (1990). The diatoms: biology and morphology of the genera. Bath: Cambridge Univ Press.

[12]Tiffany, M.A., Hernández-Becerril, D. (2005). Valve development in the diatom family Asterolampraceae H. L Smith 1872, Micropaleontology, 51(3), 217-258.

[13]Kaluzhnaya, O. (2008). Valve morphogenesis in the centric diatom Cyclotella baicalensis. In Proceeding of the 19th International Diatom Symposium. Y.V. Likhoshway. (ed.) Bristol: Biopress Limited. pp.31-38.

[14]Sato, S. (2010). Valve and girdle band morphogenesis in a bipolar centric diatom Plagiogrammopsis vanheurckii (Cymatosiraceae, Bacillariophyta), Eur. J. Phycol., 45(2), 167-176.

[15]Bedoshvili, Ye., Kaluzhnaya, O., Likhoshway, Ye. (2012). The frustule morphogenesis of Aulacoseira baicalensis in the natural population, Journal of Advanced Microscopy Research. 7, 218-224.

[16]Kooistra, W.H.C.F., De Stefano, M., Mann, D.G., Salma, N., Medlin, L.K. (2003). Phylogenetic position of Toxarium, a pennate-like lineage within centric diatoms (Bacillariophyceae), J. Phycol., 39(1), 185-197.

[17]Boyle, J.A., Czarnecki, D.B., Pickett-Heaps, J.D. (1984). Valve morphogenesis in the pennate diatom Achnanthes coarctata, J. Phycol., 20(4), 563-573.

[18]Chiappino, M.L., Volcani, B.E. (1977). Studies on the biochemistry and fine structure of silicia shell formation in diatoms VII. Sequential cell wall development in the pennateNavicula pelliculosa, Protoplasma, 93(2-3), 205-221.

[19]Cox, E., Kennaway, G. (2004). Studies of valve morphogenesis in pennate diatoms: investigating aspects of cell biology in a systematic context. In Proceedings of the 17th International Diatom Symposium, Ottawa, Canada. (ed.). M Poulin. Bristol, UK: Biopress Ltd. pp.35-48.

[20]Cox, E.J. (1999). Variation in patterns of valve morphogenesis between representatives of six biraphid diatom genera (Bacillariophyceae), J. Phycol., 35(6), 1297-1312.

[21]Kaluzhnaya, O.V., Likhoshway, Y.V. (2007). Valve morphogenesis in an araphid diatom Synedra acus subsp. radians, Diatom Research, 22(1), 81-87.

[22]Sato, S., Watanabe, T., Nagumo, T., Tanaka, J. (2011). Valve morphogenesis in an araphid diatom Rhaphoneis amphiceros (Rhaphoneidaceae, Bacillariophyta), Phycol. Res., 59(4), 236-243.

[23]Tiffany, M.A. (2002). Valve morphogenesis in the marine araphid diatom Gephyria media(Bacillariophycea), Diatom Research, 17(2), 391-400.

[24]Cox, E.J. (2012). Ontogeny, homology, and terminology—wall morphogenesis as an aid to character recognition and character state definition for pennate diatom systematics, J. Phycol., 48(1), 1-31.

[25]Li, C., Volcani, B. (1985a). Studies on the biochemistry and fine structure of silica shell formation in diatoms. VIII. Morphogenesis of the cell wall in a centric diatom, Ditylum brightwellii, Protoplasma, 124, 10-29.

[26]Li, C., Volcani, B. (1985b). Studies on the biochemistry and fine structure of silica shell formation in diatoms. IX. Sequential valve formation in a centric diatom, Chaetoceros rostratum, Protoplasma, 124, 30-41.

[27]Schmid, A.-M.M., Schulz, D. (1979). Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles, Protoplasma, 100(3-4), 267-288.

[28]Schmid, A.-M.M., Volcani, B.E. (1983). Wall morphogenesis in Coscinodiscus wailesii. I. Valve morphology and development of its architecture, J. Phycol., 19(4), 387-402.

[29]Hildebrand, M., Wetherbee, R. (2003). Components and control of silicification in diatoms. In Progress in molecular and subcellular biology. 33. (ed.). W.E.G Müller. pp.11-57.

[30]Sullivan, C. (1986). Silicification by diatoms. In Silicon biochemistry. (eds.) D Evered and M O'Connor. Chichester: Wiley. pp.59-89.

[31]Martin-Jézéquel, V., Hildebrand, M., Brzezinski, M.A. (2000). Silicon metabolism in diatoms: implication for growth, J. Phycol., 36(5), 821-840.

[32]Grachev, M.A.., Annenkov, V.V., Likhoshway, Ye.V(2008). Silicon nanotechnologies of pigmented heterokonts, Bioessays, 30(4), 328-337.

[33]Ehrlich, H., Witkowski, A. (2013). Biomineralization in diatoms: the organic templates, Biologically-Inspired Systems, 6, 39-58.

[34]Iler, R. (1979). The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. New York: Wiley.

[35]Crawford, S.A., Higgins, M.J., Mulvaney, P., Wetherbee, R. (2001). Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy, J. Phycol., 37(4), 543-554.

[36]Pickett-Heaps, J.D., Wetherbee, R., Hill, D.R.A. (1988). Cell division and morphogenesis of the labiate process in the centric diatom Ditylum brightwellii, Protoplasma, 143(2-3), 139-149.

[37]Schmid, A.-M.M., Eberwein, R.K., Hesse, M. (1996). Pattern morphogenesis in cell walls of diatoms and pollen grains: a comparison, Protoplasma, 193(1-4), 144-173.

[38]Cohn, S.A., Nash, J., Pickett-Heaps, J.D. (1989). The effects of drugs on diatom valve morphogenesis, Protoplasma, 149(2-3), 130-143.

[39]Blank, G.S., Sullivan, C.W. (1983a). Diatom mineralization of silicon acid. VI. The effects of microtubule inhibitors on silicic acid metabolism in Navicula saprophila, J. Phycol., 19(1), 39-44.

[40]Blank, G.S., Sullivan, C.W. (1983b). Diatom mineralization of silicon acid. VII. Influence of microtubule drugs on symmetry and pattern formation in valves of Navicula saprophila during morphogenesis, J. Phycol., 19(3), 294-301.

[41]Van de Meene, A.M.L., Pickett-Heaps, J.D. (2002). Valve morphogenesis in the centric diatom Proboscia alata Sundstrom, J. Phycol., 38(2), 351-363.

[42]Van de Meene, A.M.L., Pickett-Heaps, J.D. (2004). Valve morphogenesis in the centric diatom Rhizosolenia setigera (Bacillariophyceae, Centrales) and its taxonomic implications, Eur. J. Phycol., 39(1), 93-104.

[43]Edgar, L.A., Pickett-Heaps, J.D. (1984). Valve morphogenesis in the pennate diatom Navicula cuspidata, J. Phycol., 20(1), 47-61.

[44]Pickett-Heaps, J.D., Kowalski, S.E. (1981). Valve morphogenesis and the microtubule center of the diatom Hantzschia amphioxysis, Eur. J. Cell Biol. 25(1), 150-170.

[45]Pickett-Heaps, J.D. (1989). Morphogenesis of the labiate process in the araphid pennate diatom Diatom vulgare, J. Phycol. 25(1), 79-85.

[46]Pickett-Heaps, J.D. (1998). Cell division and morphogenesis of the centric diatom Chaetoceros decipiens. II. Electron microscopy and a new paradigm for tip growth, J. Phycol., 34(6), 995-1004.

[47]Tesson, B., Hildebrand, M. (2010a). Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso-and micro-scale, PLoS ONE, 5(12), e14300.

[48]Tesson, B., Hildebrand, M. (2010b). Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments, J. Struct. Biol., 169(1), 62-74.

[49]Kharitonenko, K.V., Bedoshvili, Y.D., Likhoshway, Y.V. (2015). Changes in the micro-and nanostructure of siliceous valves in the diatom Synedra acus under the effect of colchicine treatment at different stages of the cell cycle, J. Struct. Biol. 190(1), 73-80.

[50]Bedoshvili, Ye., Gneusheva, K.V., Likhoshway, Y.V(2017). Changing of silica valves of diatom Synedra acus subsp. radians influenced by paclitaxel, Tsitologiia, 59(1), 53-61.

[51]Pacheco, A., Gallo, G. (2016). Actin filament-microtubule interactions in axon initiation and branching, Brain Res. Bull., 126. 300-310.

[52]Mathur, J., Spielhofer, P., Kost, B., Chua, N. (1999). The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana, Development, 126(24), 5559-5568.

[53]Mathur, J., Chua, N.H. (2000). Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes, Plant Cell, 12(4), 465-478.

[54]Lodish, H., Berk, A., Kaiser, C., Krieger, M., Scott, M., Bretscher, A., et al. (2007). Molecular cell biology. 6 th edn. New York: W. H. Freeman and Company.

[55]Poulsen, N.C., Spector, I., Spurck, T.P., Schultz, T.F., Wetherbee, R. (1999). Diatom gliding is the result of an actin-myosin motility system, Cell Motil. Cytoskeleton, 44(1), 23-33.

[56]Tanaka, A., De Martino, A., Amato, A., Montsant, A., Mathieu, B., Rostaing, P., et al. (2015). Ultrastructure and membrane traffic during cell division in the marine pennate diatom Phaeodactylum tricornutum, Protist, 166(5), 506-521.

[57]Aumeier, C., Polinski, E., Menzel, D. (2015). Actin, actin-related proteins and profilin in diatoms: a comparative genomic analysis, Mar. Genomics, 23, 133-142.

[58]Khaitlina, S.Y. (2014). Intracellular transport based on actin polymerization, Biochemistry Mosc., 79(9), 917-927.

[59]Dawson, P. (1973). Observations on the structure of some forms of Gomphonema parvulum Kütz. III. Frustule formation, J. Phycol., 9, 353-365.

[60]Thamatrakoln, K., Kustka, A.B. (2009). When to say when: can excessive drinking explain silicon uptake in diatoms? Bioessays, 31(3), 322-327.

[61]Parkinson, J., Brechet, Y., Gordon, R. (1999). Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules, Biochim. Biophys. Acta, 1452(1), 89-102.

[62]Schmid, A.-M., Borowitzka, M., Volcani, B. (1981). Morphogenesis and biochemistry of diatom cell walls. In Cytomorphogenesis in plants. 8. (eds.). O Kiermayer. Berlin Heidelberg, New York: Springer. pp.63-97.

[63]Reimann, B.E. (1964). Deposition of silica inside a diatom cell, Exp. Cell Res., 34, 605-608.

[64]Schnepf, E., Deichgraber, G., Drebes, G. (1980). Morphogenetic processes in Attheya decora (Bacillariophyceae, Biddulphiineae), Plant Syst. Evol., 135(3-4), 265-277.

[65]Floyd, G.L., Hoops, H.J. (1979). Ultrastructure of the centric diatom, Cyclotella menenginiana: vegetative cell and auxospore development, Phycologia, 18(4), 424-435.

[66]Chiappino, M.L., Volcani, B.E. (1977). Studies on the biochemistry and fine structure of silicia shell formation in diatoms VII. Sequential cell wall development in the pennate Navicula pelliculosa, Protoplasma, 93(2-3), 205-221.

[67]Stoermer, E.F., Pankratz, H.S., Bowen, C.C. (1965). Fine structure of the diatom Amphipleura pellucida. II. Cytoplasmic fine structure and frustule formation, Am. J. Bot., 52(10), 1067-1078.

[68]Reimann, B.E., Leivin, J.C., Volcani, B.E. (1966). Studies on the biochemistry and fine structure of silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Breb.) Hilse, J. Phycol., 2(2), 74-84.

[69]Crawford, R. (1981). The siliceous components of the diatom cell wall and their morphological variation. In Silicon and Siliceous structures in biological systems. (eds.). T.L Simpson and B.E Volcani. New York: Springer-Verlag. pp.129-156.

[70]Li, C.-W., Volcani, B.E. (1984). Aspects of silicification in wall morphogenesis of diatoms, Phil. Trans. R. Soc. Lond. B, 304(1121), 519-528.

[71]Crawford, R., Schmid, A.-M. (1986). Ultrastructure of silica deposition in diatoms. In Biomineralization in lower plants and animals System Soc. 30. (eds.). B.S Leadbeater and R Riding. pp.291-314.

[72]Thomas, C.M., Smart, E.J. (2008). Caveolae structure and function, J. Cell. Mol. Med., 12(3), 796-809.

[73]Vrieling, E.G., Gieskes, W.W.C., Beelen, T.P.M. (1999). Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle, J. Phycol., 35(3), 548-559.

[74]Grachev, M.A.., Annenkov, V.V., Likhoshway, Ye.V(2008). Silicon nanotechnologies of pigmented heterokonts, Bioessays, 30(4), 328-337.

[75]Ehrlich, H., Witkowski, A. (2013). Biomineralization in diatoms: the organic templates, Biologically-Inspired Systems, 6, 39-58. BWy14RCWfaFnXkc+JWRqnm0+Tx6OdL2zRiXXmHC1NtY9noIcsg+LYIN9B0GLKeKP

点击中间区域
呼出菜单
上一章
目录
下一章
×