随着对减少摩擦和能源消耗的需求不断增加,表面纹理由于其作为润滑剂的流体动力学作用而引起了广泛关注。随着仿生技术的发展,可以通过模拟生物系统的高级结构来获得先进的表面纹理机制。现有研究表明,自然界中超过25%的生产力是由硅藻提供的 [148] ,其硅藻壳(即壳)由多层孔隙结构组成 [34,97] 。即使在同一孔的底部,有时也会出现一个或多个孔。这可以通过代表性圆筛藻属未定种的两级圆柱孔来证明。如图4.54所示,其中最外面的圆柱形孔的直径约为1.212μm,而在其底部2.23μm约为第二级圆柱形孔的直径。
图4.54 圆筛藻属的SEM图
(a)圆筛藻属的外壳;(b)圆筛藻属的双层多孔结构:从内部观察,显示孔隙的第二层和外层
硅藻孔形状主要是立方体、圆柱形或六边形 [149-150] 。正是精细的多层次孔隙结构,使硅藻具有较高的回弹性和拉伸性能等良好的力学性能,从而在进化中得以生存。例如,代表性的圆筛藻属未定种的每一层孔隙的弹性模量分别高达3.4GPa、1.7GPa和15.61GPa [18,24] 。测试表明圆筛藻属未定种的硬度达到0.12GPa [151] 。此外,已证实硅藻壳可以承受150~680N·mm -1 范围内的更高应力 [152] 。迄今为止,通过实验对硅藻的摩擦学特性进行的研究还很少。用原子力显微镜观察发现,硅藻成分之间的摩擦磨损可以通过其自润滑来克服,Aulacoseira granulate和Ellerbeckia arenaria(即两种硅藻)的条带可以充当滚珠轴承或固体润滑剂 [153-154] 。
尽管上面对简单的凹坑效应和硅藻壳进行了研究,但对硅藻多层次孔结构的摩擦学性能,特别是其在工程表面的仿生应用的模拟研究还很少。
作为对上述表面织构研究中使用的简单凹坑的扩展探索,利用硅藻结构的二级孔及其延伸形状对平行滑动表面进行织构,在本研究中称为复合凹坑。每个复合凹坑由两级孔组成,其对表面摩擦学性能的影响通过流固相互作用(FSI)方法进行研究。这种方法的应用没有考虑到硅藻壳在水中移动时由于环境高水压而引起的变形。该方法在求解水膜压力时将硅藻壳变形纳入水膜厚度中,得到的水膜压力在进一步分析硅藻壳变形时考虑,这是一个双向耦合过程。
Meng等研究了具有不同复合和简单凹坑形状的物理模型。基于这些模型,复合凹坑的流体动力润滑作用用Navier-Strokes方程求解,因为它可以克服Reynolds方程在润滑膜惯性力明显或膜厚比(即润滑膜厚度与匹配表面之间的间隙之比)较小的条件下预测摩擦副润滑性能的局限性,其中润滑剂容易发生湍流 [155-157] 。同时,利用固体本构方程求解织构化表面的变形和应力等力学性能。接下来,在典型复合凹坑和简单凹坑形状之间以及在复合凹坑形状之间对平行滑动表面的摩擦学性能进行比较,以找到最佳复合凹坑。
[1]Schlapbach, L., Züttel, A. (2001). Hydrogen-storage materials for mobile applications, Nature, 414(6861), 353-358.
[2]Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., van Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4(5), 366-377.
[3]Nakajima, T., Volcani, B.E. (1969). 3,4-Dihydroxyproline: A new amino acid in diatom cell walls, Science, 164(3886), 1400-1401.
[4]Sumper, M., Lorenz, S., Brunner, E. (2003). Biomimetic control of size in the polyamine-directed formation of silica nanospheres, Angew. Chem. Int. Ed., 42(42), 5192-5195.
[5]Hirscher, M. (2004). Nanoscale materials for energy storage, Materials Science and Engineering: B, 108(1-2), 1-1.
[6]Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y. et al. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 27(9), 1825-1851.
[7]Biswas, P., Wu, C.-Y. (2005). Nanoparticles and the Environment, J. Air Waste Manage. Assoc., 55(6), 708-746.
[8]Cerneaux, S., Zakeeruddin, S. M., Pringle, J. M., Cheng, Y.-B., Grätzel, M., Spiccia, L. (2007). Novel nano-structured silica-based electrolytes containing quaternary ammonium iodide moieties, Adv. Funct. Mater., 17(16), 3200-3206.
[9]Nel, A., Xia, T., Madler, L., Li, N. (2006). Toxic potential of materials at the nanolevel, Science, 311(5761), 622-627.
[10]Tibbitt, M.W., Dahlman, J.E., Langer, R. (2016). Emerging frontiers in drug delivery, J. Am.n Chem. Soc., 138(3), 704-717.
[11]Wang, Y., Santos, A., Evdokiou, A., Losic, D. (2015). An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy, J. Mater. Chem. B, 3(36), 7153-7172.
[12]Wang, C., Li, Y., Ostrikov, Kostya (Ken)., Yang, Y., Zhang, W. (2015). Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries, J. Alloys Compd., 646, 966-972.
[13]Maher, S., Kumeria, T., Wang, Y., Kaur, G., Fathalla, D., Fetih, G. et al. (2016). From the mine to cancer therapy: Natural and biodegradable theranostic silicon nanocarriers from diatoms for sustained delivery of chemotherapeutics, Adv. Healthc. Mater., 5(20), 2667-2678.
[14]Aw, M.S., Simovic, S., Addai-Mensah, J., Losic, D. (2011). Silica microcapsules from diatoms as new carrier for delivery of therapeutics, Nanomedicine, 6(7), 1159-1173.
[15]Maher, S., Alsawat, M., Kumeria, T., Fathalla, D., Fetih, G., Santos, A. et al. (2015). Luminescent silicon diatom replicas: self-reporting and degradable drug carriers with biologically derived shape for sustained delivery of therapeutics, Adv. Funct. Mater., 25(32), 5107-5116.
[16]Mann, D.G. (1999). The species concept in diatoms, Phycologia, 38(6), 437-495.
[17]De Stefano, M., De Stefano, L. (2005). Nanostructures in diatom frustules: functional morphology of valvocopulae in cocconeidacean monoraphid taxa, J. Nanosci. Nanotechnol., 5(1), 15-24.
[18]Losic, D., Mitchell, J.G., Voelcker, N.H. (2009). Diatomaceous lessons in nanotechnology and advanced materials, Adv. Mater., 21(29), 2947-2958.
[19]Yu, Y., Addai-Mensah, J., Losic, D. (2011). Chemical functionalization of diatom silica microparticles for adsorption of gold (iii) ions, J. Nanosci. Nanotechnol., 11(12), 10349-10356.
[20]Yu, Y., Addai-Mensah, J., Losic, D. (2010). Synthesis of self-supporting gold microstructures with three-dimensional morphologies by direct replication of diatom templates, Langmuir, 26(17), 14068-14072.
[21]Bao, L., Zang, J., Li, X. (2011). Flexible Zn 2 SnO 4 /MnO 2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes, Nano Lett., 11(3), 1215-1220.
[22]Gordon, R., Drum, R.W. (1994). Int. Rev. Cytol., 150, 243-372.
[23]Lewin, R.A. (1990). Skeletons on the coffee table, Nature, 346(6285), 619-620.
[24]Losic, D., Short, K., Mitchell, J.G., Lal, R., Voelcker, N.H. (2007). AFM nanoindentations of diatom biosilica surfaces, Langmuir, 23(9), 5014-5021.
[25]Nassif, N., Livage, J. (2011). From diatoms to silica-based biohybrids, Chem. Soc. Rev., 40(2), 849-859.
[26]Sumper, M. (2002). A phase separation model for the nanopatterning of diatom biosilica, Science, 295(5564), 2430-2433.
[27]Li, C., Wang, F., Yu, J.C. (2011). Semiconductor/biomolecular composites for solar energy applications, Energy Environ. Sci., 4(1), 100-113.
[28]Zhang, Q., Chou, T. P., Russo, B., Jenekhe, S. A., Cao, G. (2008). Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells, Angew. Chem. Int. Ed., 47(13), 2402-2406.
[29]Jeffryes, C., Gutu, T., Jiao, J., Rorrer, G.L. (2008). Metabolic insertion of nanostructured TiO 2 into the patterned biosilica of the diatom pinnularia sp. by a two-stage bioreactor cultivation process, ACS Nano, 2(10), 2103-2112.
[30]Noll, F., Sumper, M., Hampp, N. (2002). Nanostructure of diatom silica surfaces and of biomimetic analogues, Nano Lett., 2(2), 91-95.
[31]Anderson, M.W., Holmes, S.M., Hanif, N., Cundy, C.S. (2000). Hierarchical Pore Structures through Diatom Zeolitization, Angew. Chem. Int. Ed., 39(15), 2707-2710.
[32]Tachibana, Y., Akiyama, H.Y., Kuwabata, S. (2007). Optical simulation of transmittance into a nanocrystalline anatase TiO 2 film for solar cell applications, Solar Energy Materials and Solar Cells, 91(2-3), 201-206.
[33]Medarevic, D., Losic, D., Ibric, S. (2016). Diatoms-nature materials with great potential for bioapplications, Hem. Ind., 70(6), 613-627.
[34]Gordon, R., Losic, D., Tiffany, M.A., Nagy, S.S., Sterrenburg, F.A. (2009). The Glass Menagerie: diatoms for novel applications in nanotechnology, Trends Biotechnol., 27(2), 116-127.
[35]Weatherspoon, M.R., Allan, S.M., Hunt, E., Cai, Y., Sandhage, K.H. (2005). Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature's 3-D nanostructured templates, Chem. Commun., 42(5), 651-653.
[36]Zhao, J., Gaddis, C.S., Cai, Y. (2005). KH Sandhage, 20, 282-287.
[37]Ernst, E.M., Church, B.C., Gaddis, C.S., Snyder, R.L., Sandhage, K.H. (2007). Enhanced hydrothermal conversion of surfactant-modified diatom microshells into barium titanate replicas, J. Mater. Res., 22(05), 1121-1127.
[38]Losic, D., Triani, G., Evans, P.J., Atanacio, A., Mitchell, J.G., Voelcker, N.H. (2006). Controlled pore structure modification of diatoms by atomic layer deposition of TiO 2 , J. Mater. Chem., 16(41), 4029-4034.
[39]Losic, D., Yu, Y., Aw, M.S., Simovic, S., Thierry, B., Addai-Mensah, J. (2010). Surface functionalization of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies, Chem. Commun., 46(34), 6323-6325.
[40]Toster, J., Iyer, K.S., Xiang, W., Rosei, F., Spiccia, L., Raston, C.L. (2013). Diatom frustules as light traps enhance DSSC efficiency, Nanoscale, 5(3), 873-876.
[41]Jantschke, A., Herrmann, A.-K., Lesnyak, V., Eychmüller, A., Brunner, E. (2012). Decoration of diatom Biosilica with noble metal and semiconductor nanoparticles (<10 nm): assembly, characterization, and applications, Chem. Asian J., 7(1), 85-90.
[42]Rosi, N.L., Thaxton, C.S., Mirkin, C.A. (2004). Control of nanoparticle assembly by using dnamodified diatom templates, Angew. Chem. Int. Ed., 43(41), 5500-5503.
[43]Cai, Y., Sandhage, K.H. (2005). Zn 2 SiO 4 -coated microparticles with biologically-controlled 3D shapes, phys. stat. sol., 202(10), R105-R107.
[44]Schoenwaelder, M. E. A. (2002). Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Advanced Materials, 14(6), 429.
[45]Unocic, R.R., Zalar, F.M., Sarosi, P.M., Cai, Y., Sandhage, K.H. (2004). Anatase assemblies from algae: coupling biological self-assembly of 3-D nanoparticle structures with synthetic reaction chemistry, Chem. Commun., 796-797.
[46]Cai, Y., Dickerson, M.B., Haluska, M.S., Kang, Z., Summers, C.J., Sandhage, K.H. (2007). Manganese-Doped Zinc Orthosilicate-Bearing Phosphor Microparticles with Controlled Three-Dimensional Shapes Derived from Diatom Frustules, J. American Ceramic Society, 90(4), 1304-1308.
[47]Bao, Z., Weatherspoon, M.R., Shian, S., Cai, Y., Graham, P.D., Allan, S.M. et al. (2007). Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature, 446(7132), 172-175.
[48]Shen, L., Wang, Z., Chen, L. (2014). Carbon-coated hierarchically porous silicon as anode material for lithium ion batteries, RSC Adv., 4(29), 15314-15318.
[49]Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S. (1995). Mechanisms for lithium insertion in carbonaceous materials, Science, 270(5236), 590-593.
[50]Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4(9), 3243-3262.
[51]Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M. (2001). J. Power Sources, 97-8, 235-239.
[52]Wen, C.J., Huggins, R.A. (1981). Thermodynamic study of the lithium-tin system, J. Electrochem. Soc., 128(6), 1181-1187.
[53]Losic, D., Pillar, R.J., Dilger, T., Mitchell, J.G., Voelcker, N.H. (2007a). Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms, J. Porous Mater., 14(1), 61-69.
[54]Jeffryes, C., Campbell, J., Li, H., Jiao, J., Rorrer, G. (2011). The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices, Energy Environ. Sci., 4(10), 3930-3941.
[55]Baranauskas, V., Chang, D.C., Li, B.B., Peterlevitz, A.C., Trava-Airoldi, V.J., Corat, E.J. et al. (2000). Journal of Porous Materials, 7(1/3), 401-405.
[56]Campbell, B., Ionescu, R., Tolchin, M., Ahmed, K., Favors, Z., Bozhilov, K.N. et al. (2016). Sci Rep-Uk, 6.
[57]Wang, M.-S., Fan, L.-Z., Huang, M., Li, J., Qu, X. (2012). Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries, J. Power Sources, 219, 29-35.
[58]Kang, S.M., Ryou, M.-H., Choi, J.W., Lee, H. (2012). Mussel-and diatom-inspired silica coating on separators yields improved power and safety in li-ion batteries, Chem. Mater., 24(17), 3481-3485.
[59]Liu, J., Kopold, P., van Aken, P.A., Maier, J., Yu, Y. (2015). Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithiumion batteries, Angew. Chem. Int. Ed., 54(33), 9632-9636.
[60]Lisowska-Oleksiak, A., Nowak, A.P., Wicikowska, B. (2014). Aquatic biomass containing porous silica as an anode for lithium ion batteries, RSC Adv., 4(76), 40439-40443.
[61]Wu, X., Shi, Z.-qiang., Wang, C.-yang., Jin, J, Shi, Z.Q, Wang, C.Y. (2015). Nanostructured SiO 2 /C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries, Journal of Electroanalytical Chemistry, 746, 62-67.
[62]Chen, J., Lu, X., Sun, J., Xu, F. (2015). Si@C nanosponges application for lithium ions batteries synthesized by templated magnesiothermic route, Mater. Lett., 152, 256-259.
[63]Liang, J., Li, X., Zhu, Y., Guo, C., Qian, Y. (2015). Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries, Nano Res., 8(5), 1497-1504.
[64]Conway, B.E. (1999). Kluwer-Plenum Publishing Corp.
[65]Brezesinski, T., Wang, J., Tolbert, S.H., Dunn, B. Ordered mesoporous alpha-MoO 3 with isooriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater., 9(2), 146-151, 2010.
[66]Hou, Y., Cheng, Y., Hobson, T., Liu, J. (2010). Design and synthesis of hierarchical MnO 2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes, Nano Lett., 10(7), 2727-2733.
[67]Chen, W., Rakhi, R.B., Hu, L., Xie, X., Cui, Y., Alshareef, H.N. (2011). High-performance nanostructured supercapacitors on a sponge, Nano Lett., 11(12), 5165-5172.
[68]Rakhi, R.B., Chen, W., Cha, D., Alshareef, H.N. (2012). Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance, Nano Lett., 12(5), 2559-2567.
[69]Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors, Nat. Mater., 7(11), 845-854.
[70]Wang, G., Zhang, L., Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41(2), 797-828.
[71]Wang, J.-G., Yang, Y., Huang, Z.-H., Kang, F. (2013). Effect of temperature on the pseudo-capacitive behavior of freestanding MnO 2 @carbon nanofibers composites electrodes in mild electrolyte, J. Power Sources, 224, 86-92.
[72]Wang, F., Xiao, S., Hou, Y., Hu, C., Liu, L., Wu, Y. (2013). Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3(32), 13059-13084.
[73]Zhang, Y. X., Huang, M., Kuang, M., Liu, C. P., Tan, J. L., Dong, M., Yuan, Y., Zhao, X. L., and Wen, Z. Q. (2013). Facile Synthesis of Mesoporous CuO Nanoribbons for Electrochemical Capacitors Applications, International Journal of Electrochemical Science 8, 1366-1381.
[74]Santhanagopalan, S., Balram, A., Meng, D.D. (2013). Scalable high-power redox capacitors with aligned nanoforests of crystalline MnO 2 nanorods by high voltage electrophoretic deposition, ACS Nano, 7(3), 2114-2125.
[75]Huang, M., Li, F., Dong, F., Zhang, Y.X., Zhang, L.L. (2015). MnO 2 -based nanostructures for high-performance supercapacitors, J. Mater. Chem. A, 3(43), 21380-21423.
[76]Aravindan, V., Suresh Kumar, P., Sundaramurthy, J., Ling, W.C., Ramakrishna, S., Madhavi, S. (2013). Electrospun NiO nanofibers as high performance anode material for Li-ion batteries, J. Power Sources, 227, 284-290.
[77]Wang, Z., Ma, C., Wang, H., Liu, Z., Hao, Z. (2013). Facilely synthesized Fe 2 O 3 -graphene nanocomposite as novel electrode materials for supercapacitors with high performance, J. Alloys Compd., 552, 486-491.
[78]Liang, R., Cao, H., Qian, D. (2011). MoO 3 nanowires as electrochemical pseudocapacitor materials, Chem. Commun., 47(37), 10305-10307.
[79]Qu, Q., Zhu, Y., Gao, X., Wu, Y. (2012). Core-shell structure of polypyrrole grown on V 2 O 5 nanoribbon as high performance anode material for supercapacitors, Adv. Energy Mater., 2(8), 950-955.
[80]Xiong, G., Hembram, K.P.S.S., Reifenberger, R.G., Fisher, T.S. (2013). MnO 2 -coated graphitic petals for supercapacitor electrodes, J. Power Sources, 227, 254-259.
[81]Wu, Q., Liu, Y., Hu, Z. (2013). Flower-like NiO microspheres prepared by facile method as supercapacitor electrodes, J. Solid State Electrochem., 17(6), 1711-1716.
[82]Wei, W., Cui, X., Chen, W., Ivey, D.G. (2011). Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40(3), 1697-1721.
[83]Peng, L., Peng, X., Liu, B., Wu, C., Xie, Y., Yu, G. (2013). Ultrathin two-dimensional MnO 2 /graphene hybrid nanostructures for high-performance, flexible planar supercapacitors, Nano Lett., 13(5), 2151-2157.
[84]Yang, P., Ding, Y., Lin, Z., Chen, Z., Li, Y., Qiang, P. et al. (2014). Low-cost high-performance solid-state asymmetric supercapacitors based on MnO 2 nanowires and Fe 2 O 3 nanotubes, Nano Lett., 14(2), 731-736.
[85]Kai, K., Kobayashi, Y., Yamada, Y., Miyazaki, K., Abe, T., Uchimoto, Y. et al. (2012). Electrochemical characterization of single-layer MnO 2 nanosheets as a high-capacitance pseudocapacitor electrode, J. Mater. Chem., 22(29), 14691-14695.
[86]Li, Q., Wang, Z.-L., Li, G.-R., Guo, R., Ding, L.-X., Tong, Y.-X. (2012). Design and synthesis of MnO 2 /Mn/MnO 2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage, Nano Lett., 12(7), 3803-3807.
[87]Su, M., Zhang, Y., Song, X., Ge, S., Yan, M., Yu, J. et al. (2013). Three-dimensional nanoflowerlike MnO 2 functionalized graphene as catalytically promoted nanolabels for ultrasensitive electrochemiluminescence immunoassay, Electrochim. Acta, 97, 333-340.
[88]Liu, M., Gan, L., Xiong, W., Xu, Z., Zhu, D., Chen, L. (2014a). Development of MnO 2 /porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A, 2(8), 2555-2562.
[89]Zhang, Y.X., Li, F., Huang, M., Xing, Y., Gao, X., Li, B. et al. (2014). Hierarchical NiO moss decorated diatomites via facile and templated method for high performance supercapacitors, Mater. Lett., 120, 263-266.
[90]Li, F., Xing, Y., Huang, M., Li, K.L., Yu, T.T., Zhang, Y.X. et al. (2015). MnO 2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors, J. Mater. Chem. A, 3(15), 7855-7861.
[91]Guo, X.L., Kuang, M., Li, F., Liu, X.Y., Zhang, Y.X., Dong, F. et al. (2016). Engineering of three dimensional (3-D) diatom@TiO 2 @MnO 2 composites with enhanced supercapacitor performance, Electrochim. Acta, 190, 159-167.
[92]Wen, Z. Q., Li, M., Li, F., Zhu, S. J., Liu, X. Y., Zhang, Y. X., Kumeria, T., Losic, D., Gao, Y., Zhang, W., and He, S. X. (2016) Morphology-controlled MnO 2 -graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors, Dalton Transactions 45, 936-942.
[93]Zhang, Y.X., Huang, M., Li, F., Wang, X.L., Wen, Z.Q. (2014). One-pot synthesis of hierarchical MnO 2 -modified diatomites for electrochemical capacitor electrodes, J. Power Sources, 246, 449-456.
[94]Hu, L., Qu, B., Chen, L., Li, Q. (2013). Low-temperature preparation of ultrathin nanoflakes assembled tremella-like NiO hierarchical nanostructures for high-performance lithium-ion batteries, Mater. Lett., 108, 92-95.
[95]Mai, Y.J., Tu, J.P., Xia, X.H., Gu, C.D., Wang, X.L. (2011). Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries, J. Power Sources, 196(15), 6388-6393.
[96]Marcinauskas, L., Kavaliauskas, ydrunas., Valin ius, V. (2012). Carbon and nickel oxide/carbon composites as electrodes for supercapacitors, Journal of Materials Science & Technology, 28(10), 931-936.
[97]Bhatta, H., Kong, T.K., Rosengarten, G. (2009). Diffusion through Diatom Nanopores, JNanoR, 7(7), 69-74.
[98]Bruchez, M., Hotz, C. (2007). Humana.
[99]Hernández-Alonso, M.D., Fresno, F., Suárez, S., Coronado, J.M. (2009). Development of alternative photocatalysts to TiO 2 : Challenges and opportunities, Energy Environ. Sci., 2(12), 1231-1257.
[100]Calzaferri, G. (2010). Artificial photosynthesis, Top. Catal., 53(3-4), 130-140.
[101]Chen, X., Mao, S.S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107(7), 2891-2959.
[102]Inoue, Y. (2009). Photocatalytic water splitting by RuO 2 -loaded metal oxides and nitrides with d0-and d10-related electronic configurations, Energy Environ. Sci., 2(4), 364-386.
[103]Gonçalves, L.M., de Zea Bermudez, V., Ribeiro, H.A., Mendes, A.M. (2008). Dye-sensitized solar cells: A safe bet for the future., Energy Environ. Sci., 1(6), 655-667.
[104]Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P. et al. (1993). Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 115(14), 6382-6390.
[105]O'Regan, B., Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films, Nature, 353(6346), 737-740.
[106]Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, G. (2009). Zno nanostructures for dye-sensitized solar cells, Adv. Mater., 21(41), 4087-4108.
[107]Duong, T.-T., Choi, H.-J., He, Q.-J., Le, A.-T., Yoon, S.-G. (2013). Enhancing the efficiency of dye sensitized solar cells with an SnO 2 blocking layer grown by nanocluster deposition, J. Alloys Compd., 561, 206-210.
[108]Barea, E., Xu, X., González-Pedro, V., Ripollés-Sanchis, T., Fabregat-Santiago, F., Bisquert, J. (2011). Origin of efficiency enhancement in Nb 2 O 5 coated titanium dioxide nanorod based dye sensitized solar cells, Energy Environ. Sci., 4(9), 3414-3419.
[109]Grätzel, M. (2003). Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153.
[110]Pan, L., Sander, M.B., Huang, X., Li, J., Smith, M., Bittner, E. et al. (2004). Microporous metal organic materials: promising candidates as sorbents for hydrogen storage, J. Am. Chem. Soc., 126(5), 1308-1309.
[111]Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., Sumper, M. (2004). Diatoms as living photonic crystals, Appl. Phys. B, 78(3-4), 257-260.
[112]Huang, D.-R., Jiang, Y.-J., Liou, R.-L., Chen, C.-H., Chen, Y.-A., Tsai, C.-H. (2015). Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO 2 working electrodes, Appl. Surf. Sci., 347, 64-72.
[113]Chandrasekaran, S., Sweetman, M.J., Kant, K., Skinner, W., Losic, D., Nann, T. et al. (2014). Silicon diatom frustules as nanostructured photoelectrodes, Chem. Commun., 50(72), 10441-10444.
[114]Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O'Keeffe, M. (2003). Hydrogen storage in microporous metal-organic frameworks, Science, 300(5622), 1127-1129.
[115]Mu, S.C., Pan, M., Yuan, R.Z. (2005). A new concept: Hydrogen storage in minerals, MSF, 475-479, 2441-2444.
[116]Karatepe, N., Erdo an, N., Ersoy-Meriçboyu, A., Küçükbayrak, S. (2004). Preparation of diatomite/ Ca(OH) 2 sorbents and modelling their sulphation reaction, Chem. Eng. Sci., 59(18), 3883-3889.
[117]Jin, J., Zheng, C.H., Yang, H.M. (2014). Funct Mater Lett, 7.
[118]Dincer, I. (2002). On thermal energy storage systems and applications in buildings, Energy and Buildings, 34(4), 377-388.
[119]Khudhair, A.M., Farid, M.M. (2004). A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Conversion and Management, 45(2), 263-275.
[120]Tyagi, V.V., Kaushik, S.C., Tyagi, S.K., Akiyama, T. (2011). Development of phase change materials based microencapsulated technology for buildings: A review, Renewable and Sustainable Energy Reviews, 15(2), 1373-1391.
[121]Liu, C.-P., Seeds, A. (2010). Wireless-over-fiber technology-bringing the wireless world indoors, Opt. Photonics News, 21(11), 28-33.
[122]Zhou, D., Zhao, C.Y., Tian, Y. (2012). Review on thermal energy storage with phase change materials (PCMs) in building applications, Appl. Energy, 92, 593-605.
[123]Regin, A.F., Solanki, S.C., Saini, J.S. (2008). Heat transfer characteristics of thermal energy storage system using pcm capsules: A review, Renewable and Sustainable Energy Reviews, 12(9), 2438-2458.
[124]Memon, S.A. (2014). Phase change materials integrated in building walls: A state of the art review, Renewable and Sustainable Energy Reviews, 31, 870-906.
[125]Sarier, N., Onder, E. (2012). Organic phase change materials and their textile applications: An overview, Thermochim. Acta, 540, 7-60.
[126]Tyagi, V.V., Kaushik, S.C., Tyagi, S.K., Akiyama, T. (2011). Development of phase change materials based microencapsulated technology for buildings: A review, Renewable and Sustainable Energy Reviews, 15(2), 1373-1391.
[127]Zhang, Z., Shi, G., Wang, S., Fang, X., Liu, X. (2013). Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material, Renewable Energy, 50, 670-675.
[128]Kenisarin, M.M., Kenisarina, K.M. (2012). Form-stable phase change materials for thermal energy storage, Renewable and Sustainable Energy Reviews, 16(4), 1999-2040.
[129]Nomura, T., Okinaka, N., Akiyama, T. (2009). Impregnation of porous material with phase change material for thermal energy storage, Mater. Chem. Phys., 115(2-3), 846-850.
[130]Lafdi, K., Mesalhy, O., Elgafy, A. (2008). Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications, Carbon N Y, 46(1), 159-168.
[131]Sar , A., Biçer, A. (2012). Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs, Solar Energy Materials and Solar Cells, 101, 114-122.
[132]Li, M., Wu, Z., Kao, H., Tan, J. (2011). Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material, Energy Conversion and Management, 52(11), 3275-3281.
[133]Zhang, D., Zhou, J., Wu, K., Li, Z. (2005). Granular phase changing composites for thermal energy storage, Solar Energy, 78(3), 471-480.
[134]Jiao, C., Ji, B., Fang, D. (2012). Preparation and properties of lauric acid-stearic acid/expanded perlite composite as phase change materials for thermal energy storage, Mater. Lett., 67(1), 352-354.
[135]Li, M., Wu, Z., Chen, M. (2011). Preparation and properties of gypsum-based heat storage and preservation material, Energy and Buildings, 43(9), 2314-2319.
[136]Li, M., Kao, H., Wu, Z., Tan, J. (2011a). Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials, Appl. Energy, 88(5), 1606-1612.
[137]Karaman, S., Karaipekli, A., Sar , A., Biçer, A. (2011). Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage, Solar Energy Materials and Solar Cells, 95(7), 1647-1653.
[138]Karaipekli, A., Sar , A. (2009). Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage, Solar Energy, 83(3), 323-332.
[139]Karaipekli, A., Sar , A. (2010). Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage, Journal of Industrial and Engineering Chemistry, 16(5), 767-773.
[140]Li, M., Wu, Z., Kao, H. (2011b). Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials, Appl. Energy, 88(9), 3125-3132.
[141]Dong, Z., Li, Z.J., Zhou, H.M., Wu, K. (2004). Cement Concrete Res, 34, 927-934.
[142]Chen, Z., Su, D., Qin, M., Fang, G. (2015). Preparation and characteristics of composite phase change material (CPCM) with SiO 2 and diatomite as endothermal-hydroscopic material, Energy and Buildings, 86, 1-6.
[143]Jeong, S.-G., Jeon, J., Lee, J.-H., Kim, S. (2013). Optimal preparation of PCM/diatomite composites for enhancing thermal properties, Int. J. Heat Mass Transf., 62, 711-717.
[144]Sun, Z., Zhang, Y., Zheng, S., Park, Y., Frost, R.L. (2013). Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials, Thermochim. Acta, 558, 16-21.
[145]Xu, B., Li, Z. (2014a). Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material, Appl. Energy, 121, 114-122.
[146]Xu, B., Li, Z. (2014b). Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites, Energy, 72, 371-380.
[147]Li, X., Sanjayan, J.G., Wilson, J.L. (2014). Fabrication and stability of form-stable diatomite/paraffin phase change material composites, Energy and Buildings, 76, 284-294.
[148]Werner, D. (1977). The Biology of Diatom. 1st ed. 0632000678. California, USA: University of California Press. ISBN.
[149]Noyes, J., Sumper, M., Vukusic, P. (2008). Light manipulation in a marine diatom, J. Mater. Res.,23, (No. 12), 3229-3235.
[150]Roselli, L., Stanca, E., Paparella, F., Mastrolia, A., Basset, A. (2013). Determination of coscinodiscus cf. Granii biovolume by confocal microscopy: Comparison of calculation models, J. Plankton Res., 35,, (No. 1), 135-145.
[151]Subhash, G., Yao, S., Bellinger, B., Gretz, M.R. (2005). Investigation of mechanical properties of diatom frustules using nanoindentation, J. Nanosci. Nanotechnol., 5(1), 50-56.
[152]Hamm, C.E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K. et al. (2003). Architecture and material properties of diatom shells provide effective mechanical protection, Nature, 421(4925), 841-843.
[153]Gebeshuber, I.C., Kindt, J.H., Thompson, J.B., Del Amo, Y., Stachelberger, H., Brzezinski, M.A. et al. (2003). Atomic force microscopy study of living diatoms in ambient conditions, J. Microsc., 212(3), 292-299.
[154]Gebeshuber, I.C., Stachelberger, H., Drack, M. (2005). Diatom bionanotribology—biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear, J. Nanosci. Nanotechnol., 5(1), 79-87.
[155]Arghir, M., Roucou, N., Helene, M., Frene, J. (2003). Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell, J. Tribol., 125(No. 2), 309-318.
[156]Brajdic-Mitidieri, P., Gosman, A.D., Ioannides, E., Spikes, H.A. (2005). CFD analysis of a low friction pocketed pad bearing, J. Tribol., 127(4), 803-812.
[157]Sahlin, F., Glavatskih, S.B., Almqvist, Torbjörn., Larsson, R. (2005). Two-dimensional CFDanalysis of micro-patterned surfaces in hydrodynamic lubrication, J. Tribol., 127, (0742-4787), 96-102.