一部手机可以视作一个微系统,集成了具有多种用途的模块。以无线传输这一用途为例,根据功能的不同,需要用到天线的模块包括移动蜂窝通信模块、Wi-Fi(Wireless Fidelity,无线保真)模块、蓝牙模块、卫星导航模块、近场通信(Near Field Communication,NFC)模块、无线充电模块等。下面简单介绍这些模块。
移动蜂窝通信模块是手机天线设计中最复杂的模块,用于与基站建立通信。从1G到5G,移动蜂窝通信模块的天线需要支持的频段越来越宽,天线的数量也越来越多。手机内用于蜂窝通信的天线数量为6~14个。
Wi-Fi模块用于室内局域网,与无线路由器建立通信。Wi-Fi标准目前演进到了第7代,即IEEE 802.11be,工作频段是无须授权的工业频段,主要包括2.4 GHz频段和5 GHz频段。其中,2.4 GHz频段的频率范围是2.4~2.497 GHz,5 GHz频段的频率范围是5.15~5.85 GHz。由于工作频率较高、通信距离较短,Wi-Fi模块的天线数量较少。
蓝牙模块用于低成本、低功耗的近距离无线连接。蓝牙技术目前演进到了5.4版本。不同便携设备使用的蓝牙模块的工作频率有所区别,手机内蓝牙模块的工作频段是2.4 GHz频段。这个频段的蓝牙模块与Wi-Fi模块不仅共用同一个频段,还经常共用一个天线以节省天线空间。
卫星导航模块用于接收卫星信号,实现用户位置的实时定位。该模块的主流标准有美国的GPS(Global Positioning System,全球定位系统)[工作在1575.42 MHz频段(L1)和1176.45 MHz频段(L5)]、欧洲的“伽利略”系统(工作在1575.42 MHz频段)、俄罗斯的格洛纳斯系统(工作在1602 MHz频段),以及我国的北斗卫星导航系统(工作在1561 MHz频段)。由于卫星导航模块具有小带宽,而且一般只需具备接收能力,因此卫星导航模块的天线设计较为简单。随着手机直连卫星应用的兴起,更多的频段将被用于卫星通信。
近场通信模块用于超近距离非接触通信。最初由诺基亚和飞利浦等企业共同制定近场通信模块的标准,该模块工作在13.56 MHz频段。由于这个频段的波长非常长,手机内的近场通信天线属于电小尺寸天线,辐射能力非常弱,能够通过磁场感应实现电子支付、身份认证、数据交换、防伪等多种功能。
无线充电模块用于实现手机的无线充电功能。该模块的主流标准有Qi标准、PMA(Physical Medium Attachment,物理媒体连接)标准等。其中,Qi标准基于电磁感应原理,电磁波频率为100~205 kHz,适用于短距离的无线充电,其特点是兼容性强且传输效率高。目前市面上大部分无线充电产品都采用这一标准,该标准也是大众最熟悉的无线充电标准。
将这些模块组合在一起,便构成了一个多天线系统。手机内多天线的典型布局方案如图1-4所示。众多天线分布在手机平台内部各个位置。在这个典型的布局方案中,用于移动通信的众多天线主要分布在金属边框上,通过设置断点来有效辐射能量。其中,低频段天线的数量为2个,分别放置于手机的底部和侧壁;中高频段与新空口天线的数量为4个,分别放置于金属边框的4条边上;Wi-Fi天线的数量为2个,放置于手机的左上角;GPS天线的数量为1个,放置于手机的顶部;毫米波天线的数量为3个,放置于手机后盖内侧;超宽带天线的数量为3个,放置于手机后盖内侧;近场通信天线与无线充电线圈同样放置于手机后盖内侧。可见,这个典型布局方案中包含至少17个天线。目前移动通信已经演进到了5G时代,移动通信的工作频率更高、功能更广泛,手机内的移动蜂窝通信模块需要部署多个天线,才能实现高速无线数据传输和多功能应用。
图1-4 手机内多天线的典型布局方案
在这些功能模块中,Wi-Fi模块的天线与蓝牙模块的天线可共用,卫星导航模块的工作频段极窄,用一个小尺寸天线即可覆盖。因此,手机天线的设计难点在于覆盖移动蜂窝通信频段。基于此,本书主要介绍移动蜂窝通信模块中的天线设计。
手机内的多个天线模块具有独立的功能,能够互不干扰地工作。对多天线系统来说,每种类型的天线在手机内的相对位置和净空大小基本固定。考虑到Wi-Fi模块、蓝牙模块、卫星导航模块、近场通信模块和无线充电模块的天线设计方案较为成熟,本节重点介绍用于4G/5G移动蜂窝通信模块的多天线系统的典型工作方式。
对于手机内移动蜂窝通信模块的多天线,根据频段不同可以将它们划分为3组独立工作的天线:第一组是覆盖698~960 MHz(低频段)和1710~2690 MHz(中高频段)的天线,第二组是覆盖3300~6000 MHz(高频段)的天线,第三组是覆盖24.25~29.5 GHz(毫米波频段)的天线。每一组天线都包含若干个天线,根据工作方式不同,同一组内的多个天线可以分为两类:一类是按照MIMO机制工作的多天线系统,另一类是按照相控阵机制工作的多天线系统。具体来说,第一组天线和第二组天线按照MIMO机制工作,第三组天线按照相控阵机制工作。
MIMO技术是近几十年来移动通信领域的重要技术之一,手机多天线与基站多天线构成的MIMO通信系统的工作原理如图1-5所示。和早期的单输入单输出系统相比,MIMO通信系统通过在基站端与手机端布置多个天线,使信道容量成倍增加,优势是不会占用更多频谱资源,也不需要增加天线发射功率。除此之外,5G相比4G新增了一些频段,这些频段的工作频率较高,对应天线单元的体积较小,便于在一个设备上实现MIMO天线的集成设计。
图1-5 MIMO通信系统的工作原理
然而,在手机天线中应用MIMO技术提升传输速率时需要克服一系列的技术难点。例如,由于手机内部空间有限,采用MIMO技术后工作在同一频段的天线数量增加,导致天线单元的距离过近,通常会引起较强的耦合,不仅难以起到增加信道容量的作用,甚至还可能影响天线的辐射效率。因而需要采用解耦方法降低天线单元间的耦合强度。此外,天线的小型化和宽频化始终是手机设计中追求的目标,而5G低频段天线的尺寸会比5G高频段天线的尺寸大得多,这也是在低频段使用MIMO技术需要克服的难题。
考虑到传统移动通信频段集中在6 GHz以下,已经非常拥挤,5G在传统频段基础上新开辟了毫米波频段,进一步提升无线传输速率。毫米波有一系列独特的性质,它既具有可用频段宽、毫米波器件尺寸小、波束指向性好等优点,也存在路径损耗大、毫米波器件输出功率小等缺点。如何利用毫米波的优点并弥补其缺点,激发了众多研究人员的研究兴趣。
相控阵技术是克服路径损耗大这一缺点的有效手段,在雷达系统中已经得到了广泛的应用,可在提升天线增益的同时实现大空域的动态覆盖。相控阵技术是指将多个相同形式的天线按照一定规则均匀排列成线性阵列或平面阵列,并为每个天线单元配备移相器来实时改变天线单元的馈电相位,具有不同相位的电磁波在空间中进行矢量叠加,使得合成后的信号强度增强或减弱,从而产生特定指向的高增益波束。由于每个天线单元是通过电控相位的方式切换波束的,故而将这样的天线命名为相控阵天线。相控阵技术具有功耗高、成本高、复杂度高等问题,早期并未应用到移动通信领域。随着高传输速率需求的增加、收发组件成本的下降以及毫米波频段的商用,5G开始引入相控阵技术,通过封装天线(Antenna-in-
Package,AiP)的形式实现高度集成。
在5G的典型场景中,基站端布设有大规模的天线,可根据用户数量和位置,产生相应数量的波束和波束指向。移动终端天线具有波束扫描能力,能够根据终端的位置和姿态实时调整波束指向,如图1-6所示。天线作为波束调控的关键部件,在5G移动通信系统中扮演核心器件的角色。尽管毫米波频段的天线标准尚未完全敲定,但业界已经在5G毫米波天线方面达成了一些共识 [6-7] 。用于5G移动终端的毫米波天线需具有3个基本特征:高的增益、宽的波束扫描角和低的成本。毫米波的路径损耗大,在发射功率受限的条件下,要建立稳定的通信链路,5G移动终端的毫米波天线需具有高增益。增益的提高意味着波束宽度变窄,波束的覆盖范围变小。为了减小信号盲区,天线需具备波束扫描能力,以便动态调整波束指向。此外,终端天线是大规模使用的消费电子器件,任何成本的缩减都将带来可观的经济效益。因此,可宽角扫描的低成本毫米波天线对5G移动终端天线设计来说具有巨大吸引力。
图1-6 手机使用相控阵模块实现空间信号覆盖