购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1] SUPPER W, GROLL M, MAYER U. Reaction kinetics in metal hydride reaction beds with improved heat and mass transfer[J]. Journal of the Less Common Metals,1984,104(2):279-286.

[2]大角泰章.金属氢化物的性质与应用[M],北京:化学工业出版社,1990.

[3]JANDER W. Reactions in the solid state at high temperatures[J]. Zeitschrift für anorganische und allgemeineChemie, 1927,163:1-30.

[4] GINSTLING A, BROUNSHTEIN B. Concerning the diffusion kinetics of reactions in spherical particles [J]. Journal of Applied Chemistry USSR, 1950,23 (12):1327-1338.

[5] CARTER R E. Kinetic model for solid-state reactions[J]. The Journal of Chemical Physics, 1961,34(6):2010-2015.

[6] CHOU K-C, XU K. A new model for hydriding and dehydriding reactions in intermetallics[J]. Intermetallics, 2007,15(5-6):767-777.

[7] AVRAMI M. Kinetics of phase change. I General theory[J]. The Journal of Chemical Physics, 1939,7(12):1103-1112.

[8] AVRAMI M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei[J]. The Journal of Chemical Physics, 1940,8(2):212-224.

[9] AVRAMI M. Granulation, phase change, and microstructure kinetics of phase change. III[J]. The Journal of Chemical Physics, 1941,9(2):177-184.

[10] PANG Y, SUN D, GU Q, et al. Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended Jonhson-Mehl-Avrami-Kolomogorov model with analytical solutions [J]. Crystal Growth & Design, 2016,16 (4):2404-2415.

[11] PANG Y, LI Q. Insight into the kinetic mechanism of the first-step dehydrogenation of Mg (AlH 4) 2 [J]. ScriptaMaterialia, 2017,130:223-228.

[12] PANG Y, LI Q. A review on kinetic models and corresponding analysis methods for hydrogen storage materials[J]. International Journal of Hydrogen Energy, 2016,41(40):18072-18087.

[13] BOOTH F. A note on the theory of surface diffusion reactions[J]. Transactions of the Faraday Society, 1948,44:796-801.

[14] CRANK J. The mathematics of diffusion [M]. London:Oxford university press,1979.

[15] VALENSI G. Kinetics of the oxidation of metallic spherules and powders [J].Comptes Rendus, 1936,202(4):309-12.

[16] CHOU K C, LUO Q, LI Q, et al. Influence of the density of oxide on oxidation kinetics[J]. Intermetallics, 2014,47:17-22.

[17] CHOU K C, HOU X M. Kinetics of high-temperature oxidation of inorganic nonmetallic materials[J]. Journal of the American Ceramic Society, 2009,92 (3):585-594.

[18] KEMPEN A T W, SOMMER F, MITTEMEIJER E J. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth[J]. Journal of Materials Science, 2002,37(7):1321-1332.

[19] CARSTENSEN J T. Stability of solids and solid dosage forms[J]. Journal of Pharmaceutical Sciences, 1974,63(1):1-14.

[20] ZOU J, ZENG X, YING Y, et al. Study on the hydrogen storage properties of core-shell structured Mg-RE (RE = Nd, Gd, Er) nano-composites synthesized through arc plasma method[J]. International Journal of Hydrogen Energy, 2013,38(5):2337-2346.

[21] PAN Y B, WU Y F, LI Q. Modeling and analyzing the hydriding kinetics of Mg-LaNi 5 composites by Chou model [J]. International Journal of Hydrogen Energy, 2011,36(20):12892-12901.

[22] LI Q, LU Y, LUO Q, et al. Thermodynamics and kinetics of hydriding and dehhydriding reactions in Mg-based hydrogen storage materials [J], Journal of Magnesium and Alloys, 2021,9:1922-1941.

[23] SHAO H, MATSUDA J, LI H W, et al. Phase and morphology evolution study of ball milled Mg-Co hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2013,38(17):7070-7076.

[24] SHAO H, ASANO K, ENOKI H, et al. Fabrication, hydrogen storage properties and mechanistic study of nanostructured Mg 50 Co 50 body-centered cubic alloy[J].Scripta Materialia, 2009,60(9):818-821.

[25] SHAO H, XIN G, ZHENG J, et al. Nanotechnology in Mg-based materials for hydrogen storage[J]. Nano Energy, 2012,1(4):590-601.

[26] BARKHORDARIAN G, KLASSEN T, BORMANN R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb 2 O 5 as catalyst[J]. Scripta Materialia, 2003,49(3):213-217.

[27] MUSTAFA N S, ISMAIL M. Hydrogen sorption improvement of MgH 2 catalyzed by CeO 2 nanopowder[J]. Journal of Alloys and Compounds, 2017,695:2532-2538.

[28] WANG L, HU Y, LIN J, et al. The hydrogen storage performance and catalytic mechanism of the MgH 2 -MoS 2 composite [J], Journal of Magnesium and Alloys,2022, In press. https://doi. org/10.1016/j. jma. 2022.06.001.

[29] LI Q, CHOU K C, LIN Q, et al. Hydriding kinetics of the LaNiMg 17 -H system prepared by hydriding combustion synthesis[J]. Journal of Alloys and Compounds,2004,373(1-2):122-126.

[30] LI Q, LIN Q, JIANG L, et al. On the characterization of La 1.5 Mg 17 Ni 0.5 composite materials prepared by hydriding combustion synthesis[J]. Journal of Alloys and Compounds, 2004,368(1-2):101-105.

[31] PANG X, RAN L, CHEN Y, et al. Enhancing hydrogen storage performance via optimizing Y and Ni element in magnesium alloy [J]. Journal of Magnesium and Alloys, 2022,10:821-835.

[32] OUYANG L Z, YANG X S, ZHU M, et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH 2.73 and Ni in CeH 2.73 -MgH 2 -Ni nanocomposites[J]. The Journal of Physical Chemistry C, 2014,118(15):7808-7820.

[33] LIU J W, ZOU C C, WANG H, et al. Facilitating de/hydrogenation by longperiod stacking ordered structure in Mg based alloys[J]. International Journal of Hydrogen Energy, 2013,38(25):10438-10445.

[34]LI Q, LUO Q, GU Q F. Insights into the composition exploration of novel hydrogen storage alloys: evaluation of the Mg-Ni-Nd-H phase diagram[J]. Journal of Materials Chemistry A, 2017,5(8):3848-3864.

[35] LI Q, LI Y, LIU B, et al. The cycling stability of the in situ formed Mg-based nanocomposite catalyzed by YH 2 [J]. Journal of Materials Chemistry A, 2017,5(33):17532-17543. 5EMFSwaabe5NFY6BDdYSgZjaVD/McHaG8Krw+qN7jiH9n6CatNJLDFUGMsT4/5R6

点击中间区域
呼出菜单
上一章
目录
下一章
×