了解了偏振片太阳镜的原理,我们自然会问,既然光线有两种偏振方向,那么偏振片太阳镜究竟让哪一种偏振方向的光通过呢?这被称为偏振片的偏振方向,正是我们第1个实验的内容。
所需材料列表
偏振片太阳镜
已知偏振方向的偏振片
判断一副偏振片太阳镜的偏振方向,最容易的方法,莫过于找到一块已知偏振方向的偏振片。如果我手头恰好有几块这样的偏振片,我们便可以开始做下面的实验了。
在图1.2(左)中,我们透过偏振片太阳镜看到了远处的景物。在图1.2(中)里,将一块已知偏振方向(如贴在偏振片上的箭头所示)的偏振片叠加在偏振片太阳镜前,此时使用的偏振片是允许上下偏振的光通过的,远处的景物依旧可以看清。但是当我们90°旋转偏振片[图1.2(右)],神奇的事情发生了,偏振片和偏振片太阳镜重叠的部分变得漆黑。这表明,该偏振片太阳镜是让上下偏振的光通过的,所以,当偏振片只让左右偏振的光通过时,它们重叠的结果就是没有光可以通过。这两块偏振片放在一起就像一道光的阀门,可以打开(当两块偏振片方向一致时),也可以闭合(当两块偏振片方向垂直时)。是不是所有的偏振片太阳镜的偏振方向都一样?答案是肯定的,不信的话,读者可以自己试一试。
图1.2 用已知偏振方向的偏振片判断偏振片太阳镜的偏振方向
所需材料只有一副偏振片太阳镜。
有读者会问了,我手头没有已知偏振方向的偏振片,怎么办?肯定有办法!
费曼先生在他的《别逗了,费曼先生!》一书中,记载了他去巴西当客座教授时遇到的一件趣事。当时巴西的大学应试教育风气非常严重,学生只会背诵教科书上的结论。费曼发现如果用教科书上的原话来提问,学生们总是能非常流利地给出答案;但是如果换一种书上没写的方式来提同一个问题,学生们就哑口无言了,如有关偏振光的问题。就像我们的第一个实验那样,费曼先拿了一块已知偏振方向的偏振片和一块未知偏振方向的偏振片给学生们演示,大家都很容易就说出了未知偏振方向的偏振片的偏振方向。这时,费曼说,如果我们只有一块未知偏振方向的偏振片,怎么判断?费曼之所以这样问,是因为学生们刚刚学过相关的知识,应该有能力回答这个问题。但是大家面面相觑,无言以对。费曼指了指窗外的大海说:“看看从海面反射的光!”仍然没有学生说话。费曼接着说:“有没有人听说过布儒斯特角?”学生们迅速地回答了这个问题,并指出当自然光经过不同折射率的介质的交界面时,以布儒斯特角入射的光的反射光是完全偏振的,偏振方向垂直于入射光和反射光所在的平面。费曼问:“然后呢?”学生们又沉默了。原来学生们将定理背诵得滚瓜烂熟,却完全不知道定理所描述的内容对应于自然界中的什么东西。如“不同折射率的介质”,空气和海水不就是一个例子吗?费曼拿起一块偏振片,对着窗外的海面,转动偏振片,学生们看到,随着偏振片的转动,海面出现了明暗变化,正如将两块偏振片重叠时看到的情景一样。学生们恍然大悟,大叫起来:“哦,这就是偏振光!”
费曼的方法简便易行,实为“居家旅行之必备良方”。下面就让我们来体验一下。
考虑到大海不是随处可见的,我们可以用一个玻璃片来模拟海面(玻璃与空气的折射率也不一样),用一个小LED灯来模拟太阳(见图1.3)。按照费曼的描述,如果透过一个偏振片太阳镜来看玻璃表面反射的LED光,当旋转偏振片太阳镜时,我们应该可以看到玻璃表面的明暗变化。
图1.3 模拟的太阳与海面
如图1.4所示,我们的确可以看到非常明显的明暗变化。见图1.4(右)中,当水平放置偏振片太阳镜时(注意这也是把偏振片太阳镜戴在头上时它的方向),玻璃表面反射的光几乎完全不见了!实际上,不止是水面和玻璃表面,很多物体表面反射的光都是偏振的,如柏油路、平滑的水泥地等。当太阳光的入射角度较小时,这些表面反射的光都具有很高的偏振性,其偏振方向垂直于入射光和反射光所在的平面。在我生活的地方,有时你能看到一个戴着墨镜边走边摇头晃脑的人,那正是作者本人,我喜欢通过改变太阳镜的偏振方向来使周围的物体忽明忽暗。当读者了解了这一有趣的现象,说不定也会传染上这一毛病(注意过马路时不能摇头晃脑啊)。
图1.4 透过偏振片看到“海面”反射“太阳光”的明暗变化
现在,大家应该明白为什么我开始说所有的偏振片太阳镜的偏振方向都是一样的了吧。因为这样设计的偏振片太阳镜能够有效屏蔽路面或者汽车引擎盖表面反射的强烈太阳光(想象一下图1.4所示的就是太阳从汽车引擎盖上反射的光),从而让戴偏振片太阳镜的司机可以安然地直视前方路面。
好奇的读者可能在思考,为什么反射光会有这个有趣的性质呢?这将留待本章最后一节的“探索与发现篇”揭晓。接下来我们来把目光从大地投向天空。
所需材料仍是一副偏振片太阳镜。
当我们透过偏振片太阳镜观看天空时,就会发现看似均匀一片、碧蓝的天空,原来也暗藏玄机。图1.5展示了透过偏振片太阳镜看到的北边的天空(此时已近黄昏,太阳在西边接近地平线的地方),不难发现,在图1.5(右)中,透过偏振片太阳镜看到的天空比图1.5(左)中的天空要暗得多。注意,在拍摄这两幅照片时,我采用了相机中的手动曝光模式,确保了左右两张照片的曝光强度是一致的(同样的曝光时间和光圈大小),这样才能对它们的明暗进行有意义的比较。如果选择自动曝光模式,相机会选用不同的曝光强度来使整个画面的平均亮度保持一致,那么在两幅照片中,天空的明暗变化就有可能是相机曝光强度不一样导致的。
图1.5 夕阳下,透过偏振片太阳镜看到的北边的天空
图1.5告诉我们,此时北边的天空所发出的光大部分是垂直于地平面偏振的。北边的天空有这样神奇的现象,那么西边的天空如何呢?见图1.6,很容易看出,西边的天空并没有可以察觉的偏振特性。不论我们怎么摆放偏振片太阳镜,亮度都是一样的。读者还可以尝试观察一下东边和南边的天空。
图1.6 透过偏振片太阳镜观察西边的天空
同样是经过大气分子散射的阳光,偏振性的差距怎么就这么大呢?关于这一点的讨论,我们也留到“探索与发现”篇。
在前面的实验中,通过偏振片,我们只能看到明与暗的变化,未免有些单调乏味。在这个实验中,我们将用两块偏振片来展示一个五彩斑斓的现象。
所需材料
两个偏振片太阳镜
塑料快餐叉
很多人都用过透明的塑料快餐叉,它看起来的确平平无奇。但是我们只用两块偏振片,就可以“化腐朽为神奇”。首先我们把两块偏振片垂直放在一起,使得它们的重叠区域不透光,如图1.7所示(我没有用偏振片太阳镜,因为弯曲的表面不太适合拍摄,但是无论使用哪种偏振片观察到的效果都是类似的)。
图1.7 将两块偏振片垂直放置
接下来,我们把透明的塑料快餐叉放入两块偏振片之间,如图1.8所示,这块平淡的塑料可能从未料到自己还会有如此流光溢彩的一刻!在没有塑料快餐叉的部分,依然没有光透过,在有塑料快餐叉的部分,七彩在塑料中流淌,尤其在它的末端,各种颜色聚集。如果把塑料快餐叉有齿的那一端放到两块偏振片之间,我们也能看到这美丽的现象。
图1.8 在两块偏振片之间,透明的塑料快餐叉变得五彩斑斓
要成为优秀的业余科学家,我们还必须透过热闹看门道。在这一节中,我们将进一步探索本章各种实验的原理。
神奇的偏振片为什么可以有选择地吸收某一种偏振光呢?这得从偏振片的微观结构说起。偏振片是一种溶解了导电物质的特殊塑料。在制作的过程中,这种特殊塑料的导电高分子链平行排列,如图1.9所示,在这种材料中,电子可以沿着导电高分子链运动,却不能在垂直于导电高分子链的方向上运动。我们是否可以通过测量电阻来判断偏振片中导电高分子链的排列呢?读者不妨试一试。
图1.9 导电高分子链在偏振片中平行排列
正如本章开始提到的,光是电磁场在空间中的波动。当一束含有两种偏振方向的非偏振光入射这块偏振片时,如图1.10所示,平行于导电高分子链偏振的光的电场能够加速偏振片中的电子沿着导电高分子链运动,从而把光的能量转化成了电子的动能,然后变成导电高分子链的热能(因为导电高分子链有电阻)。而电子不能沿垂直于导电高分子链的方向运动,从而垂直于导电高分子链偏振的光无法被电子吸收。这样,偏振片就实现了有选择性地吸收某一种偏振方向的光。
图1.10 平行于导电高分子链的偏振成分被吸收了
有读者可能会问,在图1.10中,如果入射光是一束沿着45°角偏振的光,那偏振片到底是吸收它还是不吸收它呢?这个问题,我们只需要借助高中学过的向量分解就可以解决。如图1.11所示,沿45°角方向振动的电场可以被分解为平行于导电高分子链和垂直于导电高分子链的两个分量,容易看出,水平分量还是可以驱动电子沿着导电高分子链运动从而被吸收的,而垂直分量可以通过。所以沿着45°角偏振的光经过偏振片后,也变成了竖直方向,电场振动的幅度减小为入射光的
。光的强度是以电场强度的平方来衡量的,所以光的强度减少为原来的一半。至于以任意角度入射的偏振光究竟有多少被偏振片吸收,则留给读者去计算了。
图1.11 45°角入射的偏振光,有一半被偏振片吸收了
接下来,我们来探究一下,为什么海面、玻璃表面等反射的光具有偏振性。如果大家翻开大学的光学物理书,就能找到关于这个问题的理论解释。但是我们往往容易被一堆公式淹没,即使每一步公式推导都能理解,但是合上书很快就忘记了。今天我们不用任何公式,仅仅看图来了解这个现象背后的秘密(这种图像思考的方式也是费曼先生所推崇的)。
图1.12描绘了反射过程中各束光的偏振态(注意光波是横波,即它的电场振动方向始终是和传播方向垂直的),图中
代表光波的电场垂直于纸面振动。入射光是非偏振的,如阳光,照射到水面上以后,反射光和折射光的偏振态如图1.12所示。我们容易发现,
方向偏振的入射光在反射和折射之后,还是
方向偏振。而↗方向偏振的入射光却要变成↗方向偏振的折射光,以及更加“离谱”的↖方向偏振的反射光。我们应该很容易理解光在反射时候的难处了:要把入射光沿着↗方向振荡的电场硬扭成↖方向振荡的电场,想一想也不是一件容易的事情。所以当我们了解到反射光大多是平行于水面的偏振光时,也就有几分“感同身受”了。
图1.12 反射光和折射光的偏振态
如果读者不满意这么卡通化的解释,我们也可以找到更加科学一些的理论,想象当
方向的偏振光抵达水面时,它的电场会晃动水分子中的电子,然后这些电子再发射出折射光和反射光(发光的过程可以形象地理解为电子在摇晃时发出的电磁波,物理学家称其为偶极辐射)。类比本章开篇提到的绳波,从那里我们可以看到,当晃动绳子的一头时,“发射”出去的绳波是垂直于晃动方向的,光波的发射也是类似的。一个晃动的电子发出的光波也基本上垂直于电子的晃动方向。当↗方向的偏振光抵达水面时,它的电场使得水分子中的电子沿着↗方向晃动,此时麻烦就出现了。折射光还好,因为它的传播方向基本和↗方向垂直,但是反射光的传播方向却几乎和↗方向平行,沿↗方向晃动的电子几乎不可能发射出向这个方向传播的光。所以反射光就主要由
方向的偏振光组成了。而费曼先生提到的布儒斯特角,就是当入射光以布儒斯特角入射时,反射光完全是
方向偏振的。如图1.12所示,如果反射光和折射光之间的夹角等于90°,则反射光完全偏振,此时的入射角就被称为布儒斯特角,这是一种产生完全偏振光的好办法。而且如果知道了空气和水的折射率(可以分别取为1和1.33),就可以用高中学过的物理知识计算出这个入射角,读者不妨一试。
理解了水面反射光的偏振性,再来看天空的偏振性就比较容易理解了。
我们之所以从各个角度都能看到明亮蔚蓝的天空,是因为有大气的散射存在。月球上没有大气,因此航天员看到的天空就只有朝向太阳的那一个方向是明亮的,其他方向都是深邃的黑。图1.13画出了当夕阳西下时,我们观看北边的天空的情景(读者可能会好奇为什么在我画的太阳上有一个小黑点,这是为了纪念2012年6月5日发生的金星凌日现象。当时我透过望远镜看到的景象正如图1.13所示(下一次金星凌日将会出现在2117年,错过了这一次的朋友还可以等下一次)。入射的太阳光依旧包含等量的两种偏振方向的偏振光,在它们抵达地球大气的时候,就会摇晃大气分子中的电子。↑方向晃动的电子在向四周发出↑方向偏振的光,它们主要集中在与↑方向垂直的平面(即与地面平行的平面)内传播。而
方向晃动的电子所发出的
方向偏振的光则主要分布在垂直于
方向的平面内。当朝北边(或南边)的天空看时,我们只看到↑方向的偏振光,所以那里的天空表现出很大的偏振性。而朝西边或东边的天空看时,则两种偏振方向的光都有,从而没有了偏振性。
图1.13 天空的偏振性
最后,我们来看看一个普通的塑料餐叉为什么会在偏振片的包围中变得五彩斑斓。如图1.7所示,将两块偏振片垂直地叠在一起时,本应没有光可以通过。当入射光通过第一块偏振片(假设允许沿水平方向偏振的光通过),一半光被吸收了,只剩下了沿水平方向偏振的光。而第二块偏振片恰好只允许沿竖直方向偏振的光通过,沿水平方向偏振的光完全被它的高分子链吸收了,所以最终入射光被这两块偏振片全部吞没了。但是如果在光通过第一块偏振片以后,我们能够想办法把它的偏振方向稍微旋转一下,使它不完全是沿水平方向偏振的,那么根据向量分解,它就能有一部分穿透第二块偏振片。塑料正是起到了这么一个作用(见图1.14),这种现象被称作旋光性。塑料是怎么实现这么神奇的作用的呢?我们可以这样形象地理解:和偏振片一样,普通塑料也是由高分子链组成的,与偏振片不同的是,这些高分子链的作用是很努力地把入射到它们上面的光的电场振动方向稍微拧一下,这就导致了旋光效应。而且这个拧的程度大小与高分子链排列的整齐程度有关,与光的波长也有关。塑料在制造的过程中,各个地方的高分子链排列的整齐程度是不一样的,所以各个地方对不同波长(或者说不同颜色)的光的旋转作用也不一样。有些地方旋转红光厉害一些,那么,在光通过第二块偏振片时那一片区域就显示红色;有些地方旋转蓝光厉害一些,那么,在光通过第二块偏振片时那一片区域就显示蓝色。这就是一个透明的塑料快餐叉可以呈现出五彩斑斓效果的原因了。
图1.14 偏振光通过塑料后,偏振方向发生变化
不仅塑料有旋光效应,我们常见的白糖溶解在水中以后也有类似的旋光效应产生,但是旋转的“力度”比塑料要小很多。由于糖水旋光中的旋转角度与糖水浓度有关,食品工业上还用这个现象来检测浓度。
细心的读者可能还会从第二个实验中发现折射和反射也能产生偏振方向的光的旋转,如图1.12所示。读者可以试试看,把一块玻璃放在两块偏振片之间,观察一下会发生什么。
通过本章的各种实验,相信读者对光的偏振性有了更生动的体会。读者可能会问,偏振光有什么用处吗?用处可多了,就在你身边意想不到的地方。不信?拿出你的偏振片太阳镜,对着液晶显示屏,晃动你的脑袋——哈!它是偏振的!到3D影院,拿出你的太阳镜,叠加在3D眼镜上——哈!它也是偏振的!只要留心,你还能发现更多偏振光应用的案例。