购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1]罗婕,张艺.中华民族共同体视野下的民族医药传承创新[J].世界中医药,2021,16(15):2211-2215.

[2]钟国跃,曹岚,幕泽迳,等.民族药资源现状与系统研究思路[J].中国现代中药,2022,24(7):1167-1172.

[3]李志勇,柴兴云,袁涛,等.互鉴互融——论民族药的现代研究思路[J].中国中药杂志,2017(07):1213-1219.

[4]杜江,张景梅.苗医基础[M].北京:中国古籍出版社,2007:289-292.

[5]杜江,邓永汉,杨惠杰.中国苗医绝技秘法[M].贵阳:贵州科技出版社,2014:15-18.

[6]张鹏飞.贵州苗医苗药文化传承和保护的路径浅析[J].现代经济信息,2018(6):408-409.

[7]单晓娅,汪俊,郭晓.贵州依托生态做大做强中医药产业[J].环境经济,2019(23):42-47.

[8]葛玉娟,周月圆,冷恩念,等.贵州中药材种植的发展现状及存在问题与建议[J].种子科技,2022,40(24):133-135.

[9]蒋朝晖,常楚瑞,陶玲,等.贵州苗药资源开发利用与研究现状[J].中华中医药杂志,2019(10):4731-4734.

[10]翁泽红.贵州民族医药文化的挖掘、保护与开发状况及思考[J].贵州民族大学学报(哲学社会科学版),2018(5):1-34.

[11]国家中医药管理局《中华本草》编委会.中华本草·苗药卷[M].贵阳:贵州科技出版社,2005:372.

[12]齐炼文,周建良,郝海平,等.基于中医药特点的中药体内外药效物质组生物/化学集成表征新方法[J].中国药科大学学报,2010,41(3):195.

[13]杨秀伟.中药物质基础研究是中药继承、发展、创新的关键科学问题[J].中国中药杂志,2015,40(17):3429-3434.

[14]蔡少青,王璇,尚明英,等.中药“显效理论”或有助于阐释并弘扬中药特色优势[J].中国中药杂志,2015,40(17):3435-3443.

[15]李川.中药多成分药代动力学研究:思路与方法[J].中国中药杂志,2017,42(4):607-617.

[16]Bai X,Zhu C Y,Chen J Y,et al.Recent Progress on Mass Spectrum Based Approaches for Absorption,Distribution,Metabolism,and Excretion Characterization of Traditional Chinese Medicine[J].Curr Drug Metab,2022,23(2):99-112.

[17]Thompson J W,Eschelbach J W,Wilburn R T,et al.Investigation of electrospray ionization and electrostatic focusing devices using a three-dimensional electrospray current density profiler[J].J Am Soc Mass Spectrom,2005,16(3):312-323.

[18]Gamero-Castano M,Mora J F.Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays[J].J Mass Spectrom,2000,35(7):790-803.

[19]Chen H W,Yang S P,Wortmann A,et al.Neutral desorption sampling of living objects for rapid analysis by extractive electrospray ionization mass spectrometry[J].Angew Chem Int Ed Engl,2007,46(40):7591-7594.

[20]魏娟娟,孙江晖,尹伊颜,等.基于电喷雾质谱的反应监测研究进展[J].质谱学报,2021,42(5):755-771.

[21]Xu J Q,Chen H W.Internal extractive electrospray ionization-mass spectrometry:a powerful platform for bioanalysis[J].Bioanalysis,2018,10(8):523-525.

[22]Karas M,Bahr U,Dülcks T.Nano-electrospray ionization mass spectrometry:addressing analytical problems beyond routine[J].Fresenius J Anal Chem,2000,366(6-7):669-676.

[23]Pitman C N,LaCourse W R.Desorption atmospheric pressure chemical ionization:A review[J].Anal Chim Acta,2020,1130:146-154.

[24]Talari K,Ganji S K,Kommu M,et al.Quantitative determination of targeted and untargeted pesticide residues in coconut milk by liquid chromatography-Atmospheric pressure chemical ionization-high energy collisional dissociation tandem high-resolution mass spectrometry[J].J Chromatogr A,2021,1659:462649.

[25]Alechaga É,Moyano E,Galceran M T.Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family[J].J Mass Spectrom,2013,48(11):1241-1251.

[26]Fredenhagen A,Kühnöl J.Evaluation of the optimization space for atmospheric pressure photoionization(APPI)in comparison with APCI[J].J Mass Spectrom,2014,49(8):727-736.

[27]Claude E,Jones E A,Pringle S D.DESI Mass Spectrometry Imaging(MSI)[J].Methods Mol Biol,2017,1618:65-75.

[28]Haag A M.Mass Analyzers and Mass Spectrometers[J].Adv Exp Med Biol,2016,919:157-169.

[29]Bennett P.Future developments for triple quadrupole mass spectrometers:not just hardware[J].Bioanalysis,2011,3(7):709-711.

[30]Li X X,Jiang G Y,Luo C,et al.Ion trap array mass analyzer:structure and performance[J].Anal Chem,2009,81(12):4840-4846.

[31]Nicolardi S,Bogdanov B,Deelder A M,et al.Developments in FTICR-MS and Its Potential for Body Fluid Signatures[J].Int J Mol Sci,2015,16(11):27133-27144.

[32]Page J S,Masselon C D,Smith R D.FTICR mass spectrometry for qualitative and quantitative bioanalyses[J].Curr Opin Biotechnol,2004,15(1):3-11.

[33]Campbell J L,Le Blanc J C.Using high-resolution quadrupole TOF technology in DMPK analyses[J].Bioanalysis,2012,4(5):487-500.

[34]Rappold B A.Special Considerations for Liquid Chromatography-Tandem Mass Spectrometry Method Development[J].Clin Lab Med,2018,38(3):539-551.

[35]Kapp E,Schütz F.Overview of tandem mass spectrometry(MS/MS)database search algorithms[J].Curr Protoc Protein Sci,2007,Chapter 25:Unit 25.2.

[36]Van Agthoven M A,Lam Y P Y,O'Connor P B,et al.Two-dimensional mass spectrometry:new perspectives for tandem mass spectrometry[J].Eur Biophys J,2019,48(3):213-229.

[37]appold B A.Special Considerations for Liquid Chromatography-Tandem Mass Spectrometry Method Development[J].Clin Lab Med,2018,38(3):539-551.

[38]Wang Y J,Hui S,Wondisford F E,et al.Utilizing tandem mass spectrometry for metabolic flux analysis[J].Lab Invest,2021,101(4):423-429.

[39]Randolph C E,Blanksby S J,McLuckey SA.Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry[J].Chem Phys Lipids,2020,232:104970.

[40]Glish G L,Burinsky D J.Hybrid mass spectrometers for tandem mass spectrometry[J].J Am Soc Mass Spectrom,2008,19(2):161-172.

[41]Yang M K,Li J,Zhao C Y,et al.LC-Q-TOF-MS/MS detection of food flavonoids:principle,methodology,and applications [J].Crit Rev Food Sci Nutr,2023,63(19):3750-3770.

[42]Campbell J L,Le Blanc J C.Using high-resolution quadrupole TOF technology in DMPK analyses[J].Bioanalysis,2012,4(5):487-500.

[43]Zhou J L,Qi L W,Li P.Herbal medicine analysis by liquid chromatography/time-offlight mass spectrometry[J].J Chromatogr A,2009,1216(44):7582-7594.

[44]Liang Y,Hao H P,Kang A,et al.Qualitative and quantitative determination of complicated herbal components by liquid chromatography hybrid ion trap time-of-flight mass spectrometry and a relative exposure approach to herbal pharmacokinetics independent of standards[J].J Chromatogr A,2010,1217(30):4971-4979.

[45]Hao H P,Cui N,Wang G J,et al.Global detection and identification of nontarget components from herbal preparations by liquid chromatography hybrid ion trap time-of-flight mass spectrometry and a strategy[J].Anal Chem,2008,80(21):8187-8194.

[46]Perry R H,Cooks R G,Noll R J.Orbitrap mass spectrometry:instrumentation,ion motion and applications[J].Mass Spectrom Rev,2008,27(6):661-699.

[47]Bourmaud A,Gallien S,Domon B.Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer:Principle and applications[J].Proteomics,2016,16(15-16):2146-2159.

[48]Yan X T,Zhang Y,Zhou Y,et al.Technical Overview of Orbitrap High Resolution Mass Spectrometry and Its Application to the Detection of Small Molecules in Food[J].Crit Rev Anal Chem,2022,52(3):593-626.

[49]Scigelova M,Makarov A.Advances in bioanalytical LC-MS using the Orbitrap™ mass analyzer[J].Bioanalysis,2009,1(4):741-754.

[50]Haag A M.Mass Analyzers and Mass Spectrometers[J].Adv Exp Med Biol.2016,919:157-169.

[51]Eldrid C,Thalassinos K.Developments in tandem ion mobility mass spectrometry[J].Biochem Soc Trans,2020,48(6):2457-2466.

[52]Morris C B,Poland J C,May J C,et al.Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules[J].Methods Mol Biol,2020,2084:1-31.

[53]Ewing M A,Glover M S,Clemmer DE.Hybrid ion mobility and mass spectrometry as a separation tool[J].J Chromatogr A,2016,1439:3-25.

[54]Cervinkova B,Krcmova L K,Solichova D,et al.Recent advances in the determination of tocopherols in biological fluids:from sample pretreatment and liquid chromatography to clinical studies[J].Anal Bioanal Chem,2016,408(10):2407-2424.

[55]Soltani S,Jouyban A.Biological sample preparation:attempts on productivity increasing in bioanalysis[J].Bioanalysis,2014,6(12):1691-1710.

[56]Burgess R R.Protein precipitation techniques[J].Methods Enzymol,2009,463:331-342.

[57]Silvestre C I,Santos J L,Lima J L,et al.Liquid-liquid extraction in flow analysis:A critical review[J].Anal Chim Acta,2009,652(1-2):54-65.

[58]Hamidi S,Taghvimi A,Mazouchi N.Micro Solid Phase Extraction Using Novel Adsorbents[J].Crit Rev Anal Chem,2021,51(2):103-114.

[59]Ötles S,Kartal C.Solid-Phase Extraction(SPE):Principles and Applications in Food Samples[J].Acta Sci Pol Technol Aliment,2016,15(1):5-15.

[60]Yu W,Cheng Q,Feng J,et al.Microdialysis for pharmacokinetic-pharmacodynamic studies[J].Pharmazie,2007,62(12):883-891.

[61]刘建平.生物药剂学与药物动力学[M].北京:人民卫生出版社,2016:161.

[62]曹雨,谷彩梅,顾健,等.5种特色苗药品种的研究进展与文献分析[J].中华中医药杂志,2018,33(4):1527-1531.

[63]刘晓梦,胡志平.苗药现代研究进展[J].黔南民族医专学报,2017,30(2):152-153.

[64]闫广利,孙晖,张爱华,等.中药血清药物化学研究概况及其理论和方法拓展[J].中国中药杂志,2015,40(17):3406-3412.

[65]张爱华,孙晖,闫广利,等.中医方证代谢组学——中医药研究的新策略[J].中国中药杂志,2015,40(04):569-576.

[66]陈艳君,刘梅,靳倩,等.食物影响口服药物吸收的研究进展[J].中国新药杂志,2018,27(10):1137-1143.

[67]Debotton N,Dahan A.A mechanistic approach to understanding oral drug absorption in pediatrics:an overview of fundamentals[J].Drug Discov Today,2014,19(9):1322-1336.

[68]Radwan A,Amidon G L,Langguth P.Mechanistic investigation of food effect on disintegration and dissolution of BCS classⅢ compound solid formulations:the importance of viscosity[J].Biopharm Drug Dispos,2012,33(7):403-416.

[69]Van Breemen R B,Li Y M.Caco-2 cell permeability assays to measure drug absorption [J].Expert Opin Drug Metab Toxicol,2005,1(2):175-185.

[70]Hubatsch I,Ragnarsson E G,Artursson P.Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers[J].Nat Protoc,2007,2(9):2111-2119.

[71]杨淑婷,潘洁,陆苑,等.白及有效部位中主要成分在Caco-2细胞中的吸收特性研究[J].中国中药杂志,2019,44(1):167-174.

[72]蒙文莎,袁丽,王朴,等.Caco-2细胞模型中头花蓼提取液对左氧氟沙星吸收的影响[J].中国药业,2022,31(8):37-42.

[73]张英,曹良顺,张赛航,等.以肠囊法考察药物及营养成分吸收研究进展[J].亚太传统医药,2015,11(2):47-49.

[74]Alam M A,Al-Jenoobi F I,Al-Mohizea AM.Everted gut sac model as a tool in pharmaceutical research:limitations and applications[J].J Pharm Pharmacol,2012,64(3):326-336.

[75]伍萍,李梅,巩仔鹏,等.基于在体循环肠灌流模型分析羊耳菊提取物的肠吸收特性[J].中国实验方剂学杂志,2018,24(2):1-8.

[76]巩仔鹏,李梅,侯靖宇,等.外翻肠囊法研究羊耳菊提取物在大鼠肠内的吸收[J].中国中药杂志,2018,43(3):609-617.

[77]Stappaerts J,Brouwers J,Annaert P,et al.In situ perfusion in rodents to explore intestinal drug absorption:challenges and opportunities[J].Int J Pharm,2015,478(2):665-681.

[78]Escribano E,Sala X G,Salamanca J,et al.Single-pass intestinal perfusion to establish the intestinal permeability of model drugs in mouse[J].Int J Pharm,2012,436(1-2):472-477.

[79]Caldeira T G,Ruiz-Picazo A,Lozoya-Agullo I,et al.Determination of intestinal permeability using in situ perfusion model in rats:Challenges and advantages to BCS classification applied to digoxin[J].Int J Pharm.,2018,551(1-2):148-157.

[80]Kunes M,Svoboda Z,Květina J,et al.Intestinal single-pass in situ perfusion technique in rat:the influence of L-carnitine on absorption of 7-methoxytacrine[J].Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2005,149(2):433-435.

[81]陈浩,王昌权,夏涛,等.基于大鼠在体肠灌流模型研究白及有效部位在肠道的可吸收及代谢成分[J].天然产物研究与开发,2019,31(5):772-778.

[82]李莹,康宁芳,巩仔鹏,等.体循环肠灌流法研究红禾麻提取物在类风湿关节炎大鼠与正常大鼠体内的肠吸收差异[J].天然产物研究与开发,2019,31(11):1896-1906.

[83]潘洁,杨淑婷,孙佳,等.荭草中6种活性成分在正常和心肌缺血模型大鼠体内的肠吸收特征差异研究[J].中国药房,2020,31(13):1562-1568.

[84]孙佳,刘利琴,勾健,等.基于“双态”在体肠循环灌流模型研究隔山消提取物肠吸收特性差异[J].中国中药杂志,2022,47(23):8.

[85]陈唐哲,林大勇.中药代谢化学研究方法的进展[J].世界最新医学信息文摘,2018,18(20):47-48.

[86]Knights K M,Stresser D M,Miners J O,et al.In Vitro Drug Metabolism Using Liver Microsomes[J].Curr Protoc Pharmacol,2016,74:7.8.1-7.8.24.

[87]Asha S,Vidyavathi M.Role of human liver microsomes in in vitro metabolism of drugs-a review[J].Appl Biochem Biotechnol,2010,160(6):1699-1722.

[88]吕婷,潘洁,陆苑,等.荭草提取物对大鼠CYP450酶的抑制作用评价[J].安徽农业科学,2021,49(2):162-164.

[89]潘洁,秦兰,杨淑婷,等.羊耳菊提取物对大鼠和人肝微粒体CYP450酶的体外抑制作用[J].贵州医科大学学报,2019,44(11):1273-1277.

[90]夏涛,王昌权,陈浩,等.白及有效成分Militarine在肝微粒体中的体外代谢途径及其酶促动力学特征[J].中国药房,2019,30(10):1316-1320.

[91]Xiao H,Zhang Y,Wang M.Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis[J].Trends Biotechnol,2019,37(6):618-631.

[92]Underhill G H,Khetani S R.Advances in Engineered Human Liver Platforms for Drug Metabolism Studies[J].Drug Metab Dispos,2018,46(11):1626-1637.

[93]Qiao S D,Feng S S,Wu Z T,et al.Functional Proliferating Human Hepatocytes:In Vitro Hepatocyte Model for Drug Metabolism,Excretion,and Toxicity[J].Drug Metab Dispos,2021,49(4):305-313.

[94]Barko P C,McMichael M A,Swanson K S,et al.The Gastrointestinal Microbiome:A Review[J].J Vet Intern Med,2018,32(1):9-25.

[95]Weersma R K,Zhernakova A,Fu J.Interaction between drugs and the gut microbiome[J].Gut,2020,69(8):1510-1519.

[96]Wilson I D,Nicholson J K.Gut microbiome interactions with drug metabolism,efficacy,and toxicity[J].Transl Res,2017,179:204-222.

[97]Tamplin O J,White R M,Jing L,et al.Small molecule screening in zebrafish:swimming in potential drug therapies[J].Wiley Interdiscip Rev Dev Biol,2012,1(3):459-468.

[98]梅朝叶,向文英,黄勇,等.头花蓼有效组分中3个成分在模式生物斑马鱼中的代谢研究[J].中国新药杂志,2016,25(17):2007-2013.

[99]Webster J D,Santagostino S F,Foreman O.Applications and considerations for the use of genetically engineered mouse models in drug development[J].Cell Tissue Res,2020,380(2):325-340.

[100]Koentgen F,Suess G,Naf D.Engineering the mouse genome to model human disease for drug discovery[J].Methods Mol Biol,2010,602:55-77.

[101]Roselt P,Meikle S,Kassiou M.The role of positron emission tomography in the discovery and development of new drugs,as studied in laboratory animals[J].Eur J Drug Metab Pharmacokinet,2004,29(1):1-6.

[102]Njuguna N M,Masimirembwa C,Chibale K.Identification and characterization of reactive metabolites in natural products-driven drug discovery[J].J Nat Prod,2012,75(3):507-513.

[103]Leclercq L,Cuyckens F,Mannens G S,et al.Which human metabolites have we MIST?Retrospective analysis,practical aspects,and perspectives for metabolite identification and quantification in pharmaceutical development[J].Chem Res Toxicol,2009,22(2):280-293.

[104]Kautiainen A,Sandin P,Edlund P O.Introduction to early in vitro identification of metabolites of new chemical entities in drug discovery and development[J].Pharmacol Rep,2006,58(3):341-352.

[105]Wen B,Zhu M S.Applications of mass spectrometry in drug metabolism:50 years of progress[J].Drug Metab Rev,2015,47(1):71-87.

[106]Zhang H Y,Zhang D L,Ray K,et al.Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry[J].J Mass Spectrom,2009,44(7):999-1016.

[107]冯利,曹芳瑞,刘新民,等.非靶向代谢组学生物样品采集和制备方法探讨[J].中南药学,2014,12(12):1217-1221.

[108]Schrimpe-Rutledge AC,Codreanu SG,Sherrod SD,et al.Untargeted Metabolomics Strategies-Challenges and Emerging Directions[J].J Am Soc Mass Spectrom,2016,27(12):1897-1905.

[109]杜永强,韩维维,李姗姗.中药药动学的研究概况[J].中国医药科学,2011,1(15):36-37.

[110]洪战英,罗国安,王义明,等.中药药动学的研究方法及其相关理论[J].中国药学杂志,2005,(9):649-652.

[111]李晓宇,郝海平,王广基,等.三七总皂苷多效应成分整合药代动力学研究[J].中国天然药物,2008,(5):377-381.

[112]王朴,蒙文莎,黄勇,等.微透析结合UPLC-MS/MS研究黑骨藤中3个指标成分在大鼠体内的药代动力学[J].中国中药杂志,2022,47(23):6333-6339.

[113]谢玉敏,梅朝叶,陈浩,等.水荭花提取物的药动学特性及绝对生物利用度研究[J].中国抗生素杂志,2017,42(7):611-615.

[114]郑林,杨武,向文英,等.UPLC-MS/MS同时测定静脉注射荭草花提取物大鼠血浆中3种成分及其药代动力学研究[J].中药材,2016,39(7):1574-1577.

[115]李杰,赖红杉,郝静,等.中药药效/药动学(PK/PD)研究进展[J].亚太传统医药,2008,(2):68-70.

[116]刘树民,张宁,周琦,等.药理效应法测定穿山龙总皂苷的药动学参数[J].中国实验方剂学杂志,2016,22(16):75-79.

[117]刘雅敏,张黎莉,娄玉钤,等.药物累积法研究热痹清片的药物动力学[J].辽宁中医杂志,2006,(9):1171-1172.

[118]晏肃霜,梁小明.LC-MS法及微生物效应法研究金银花提取物抗菌成分在SD大鼠体内药代动力学[J].江西中医学院学报,2009,21(4):60-62.

[119]唐娟,张青,吴耽,等.基于血清药理学和血清药物化学研究红禾麻治疗类风湿性关节炎的潜在药效物质基础[J].中国中药杂志,2022,47(17):4755-4764.

[120]朱春胜,姜卓希,李佳静,等.中药血清谱效学研究现状概述[J].中草药,2020,51(13):3569-3574.

[121]卢磊,刘晓丹,张培影.中药血清药理学及血清药物化学研究进展[J].中国中医急症,2018,27(1):178-181.

[122]王迪,高尚,穆莹莹,等.血清药理学在中药谱效关系研究中的应用[J].哈尔滨商业大学学报(自然科学版),2013,29(6):641-644.

[123]Zhou F,Zhang J W,Li P,et al.Toward a new age of cellular pharmacokinetics in drug discovery[J].Drug Metab Rev,2011,43(3):335-345.

[124]Van Bambeke F,Barcia-Macay M,Lemaire S,et al.Cellular pharmacodynamics and pharmacokinetics of antibiotics:current views and perspectives[J].Curr Opin Drug Discov Devel,2006,9(2):218-230.

[125]刘丹晨,周芳,张经纬,等.基于细胞药代动力学的中西药相互作用研究新思路与新方法[J].南京中医药大学学报,2021,37(3):325-330.

[126]倪苹,张经纬,刘嘉莉,等.细胞药代动力学研究进展[J].药学进展,2014,38(12):881-885.

[127]Lee W,Cai Y Y,Lim T P,et al.In vitro Pharmacodynamics and PK/PD in Animals[J].Adv Exp Med Biol,2019,1145:105-116.

[128]潘洁,王昌权,李奎,等.基于大鼠类风湿性关节炎模型建立黑骨藤的PK-PD模型[J].中草药,2020,51(20):5194-5200.

[129]周杰,张青,陈艺,等.基于LPS诱导的体外炎症模型建立羊耳菊抗炎活性成分的PK-PD结合模型[J].中国中药杂志,2022,47(23):6308-6319.

[130]苏红娜,张爱华,孙晖,等.中医方证代谢组学研究进展及其应用[J].世界科学技术-中医药现代化,2018,20(8):1279-1286.

[131]王喜军.中药药效物质基础研究的系统方法学——中医方证代谢组学[J].中国中药杂志,2015,40(1):13-17.

[132]Han Y,Sun H,Zhang A H,et al.Chinmedomics,a new strategy for evaluating the therapeutic efficacy of herbal medicines[J].Pharmacol Ther,2020,216:107680. Gqc99askJOAGsQbVxxiiMgOhGlNJLCZxVRIkvls2vBgofoMxCrT3znh5uXvDIJ1J

点击中间区域
呼出菜单
上一章
目录
下一章
×