[1]TUCKER M C. Progress in metal-supported solid oxide fuel cells:A review[J]. Journal of Power Sources, 2010, 195(15):4570-4582.
[2]KRISHNAN V V. Recent developments in metal-supported solid oxide fuel cells[J]. Wiley Interdisciplinary Reviews:Energy and Environment, 2017, 6(5):246-251.
[3]POWER C. Phil Caldwell and his executive team host a tour of Ceres'new manufacturing facility in Redhill[R].Redhill:Gatton Park Business Centre Wells Place, 2019.
[4]高圆,李智,李甲鸿,等.金属支撑固体氧化物燃料电池技术进展[J].综合智慧能源,2022,8(44):1-24.
[5]LEAH R T, BONE P A, SELCUK A, et al. Latest results and commercialization of the ceres power SteelCell ® technology platform[J]. Ecs Transactions, 2019, 91(1):51-61.
[6]BANCE P, BRANDON N P, GIRVAN B, et al. Spinning-out a fuel cell company from a UK University—2 years of progress at Ceres Power[J]. Journal of Power Sources, 2004, 131(1-2):86-90.
[7]BALLARD T D A, REES L, NOBBS C, et al. Development of the 5kWe SteelCell ® Technology Platform for Stationary Power and Transport Applications[J]. Ecs Transactions, 2019, 91(1):117-122.
[8]NIELSEN J, PERSSON A H, MUHL T T, et al. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications[J]. J Electrochem Soc, 2018, 165(2):F90-F6.
[9]ROEHRENS D, PACKBIER U, FANG Q P, et al. Operation of Thin-Film Electrolyte Metal-Supported Solid Oxide Fuel Cells in Lightweight and Stationary Stacks: Material and Microstructural Aspects[J]. Materials, 2016, 9(9):762-767.
[10]KONG Y H, HUA B, PU J A, et al. A cost-effective process for fabrication of metal-supported solid oxide fuel cells[J]. Int J Hydrogen Energ, 2010, 35(10):4592-4596.
[11]BAE J. A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method[J]. Journal of the Korean Ceramic Society, 2016, 53:478-482.
[12]LEAH R, BONE A, HAMMER E, et al. Development Progress on the Ceres Power Steel Cell Technology Platform: Further Progress Towards Commercialization[J]. Ecs Transactions, 2017, 78(1):87-95.
[13]ROBERT L, MIKE L, ROBIN P, et al. Process for forming a metal supported solid oxide fuel cell:us 2015/0064596A/[P]. 2015-03-05.
[14]LEAH R, BONE A, SELCUK A, et al. Development of Highly Robust, Volume-Manufacturable Metal-Supported SOFCs for Operation Below 600℃[J]. Ecs Transactions, 2011, 35(1):351-367.
[15]ATKINSON A, BARON S, BRANDON N P, et al. Metal-supported solid oxide fuel cells for operation at temperatures of 500-650℃[J]. Fuel Cell Science, Engineering and Technology, 2003, 1759:499-506.
[16]FRANCO T, HAYDN M, WEBER A, et al. The Status of Metal-Supported SOFC Development and Industrialization at Plansee[J]. Ecs Transactions, 2013, 57:471-480.
[17]HAYDN M, ORTNER K, FRANCO T, et al. Development of metal supported solid oxide fuel cells based on powder metallurgical manufacturing route[J]. Powder Metall, 2013, 56(5):382-387.
[18]UDOMSILP D, RECHBERGER J, NEUBAUER R, et al. Metal-Supported Solid Oxide Fuel Cells with Exceptionally High Power Density for Range Extender Systems[J]. Cell Rep Phys Sci, 2020, 1(6):418-435.
[19]CHRISTIANSEN N, PRIMDAHL S, WANDEL M, et al. Status of the Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and DTU Energy Conversion[J]. Solid Oxide Fuel Cells 13(Sofc-Xiii), 2013, 57(1):43-52.
[20]HICKEY D, ALINGER M, SHAPIRO A, et al. Stack Development at GE-Fuel Cells[J]. Ecs Transactions, 2017, 78(1):107-116.
[21]GAO J T, LI J H, WANG Y P, et al. Performance and Stability of Plasma-Sprayed 10×10cm 2 Self-sealing Metal-Supported Solid Oxide Fuel Cells[J]. J Therm Spray Techn, 2021, 30(4):1059-1068.
[22]GAO J T, LI C X, WANG Y P, et al. Study on the Fabrication and Performance of Very Low Pressure Plasma Sprayed Large-area Porous Metal Supported Solid Oxide Fuel Cell[J]. International Thermal Spray Conference and Exposition(Itsc 2018), 2018:665-669.
[23]GAO J T, WANG Y P, LI C X, et al. Study on the Fabrication and Performance of Very Low Pressure Plasma Sprayed Porous Metal Supported Solid Oxide Fuel Cell[J]. Ecs Transactions, 2017, 78(1):2059-2067.
[24]GHIARA G, PICCARDO P, BONGIORNO V, et al. Characterization of Metallic Interconnects Extracted from Solid Oxide Fuel Cell Stacks Operated up to 20, 000 h in Real Life Conditions:The Air Side[J].Intemational Journal of Hydrogen Energy, 2021, 46(46):23815-23827.
[25]BIANCO M, OUWELTJES J P, VAN HERLE J. Degradation analysis of commercial interconnect materials for solid oxide fuel cells in stacks operated up to 18000 hours[J]. Int J Hydrogen Energ, 2019, 44(59):31406-31422.
[26]WU J W, LIU X B. Recent Development of SOFC Metallic Interconnect[J]. J Mater Sci Technol, 2010, 26(4):293-305.
[27]YANG Z, PAXTON D, WEIL K, et al. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications[R/OL](2002-11-24)[2022-10-20]https://doi. org/10.2172/15010553.
[28]CHO H J, CHOI G M. Fabrication and characterization of Ni-supported solid oxide fuel cell[J]. Solid State Ionics, 2009, 180(11-13):792-795.
[29]SOLOUYEV A A, RABOTKIN S V, SHIPILOVA A V, et al. Solid oxide fuel cell with Ni-Al support[J]. Int J Hydrogen Energ, 2015, 40(40):14077-14084.
[30]XU N, CHEN M, HAN M F. Oxidation behavior of a Ni-Fe support in SOFC anode atmosphere[J]. J Alloy Compd, 2018, 765:757-763.
[31]WANG X, LI K, JIA L C, et al. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors[J]. Journal of Power Sources, 2015, 277:474-479.
[32]AHMET S. METAL SUBSTRATE FOR FUEL CELLS:EP2038950A1[P]. 2009-03-05.
[33]江舟,文魁,刘太楷,等.固体氧化物燃料电池金属连接体防护涂层研究进展[J].表面技术,2022,51(4):14-23.
[34]SAEIDPOUR F, ZANDRAHIMI M, EBRAHIMIFAR H. Evaluation of pulse electroplated cobalt/yttrium oxide composite coating on the Crofer 22 APU stainless steel interconnect[J]. Int J Hydrogen Energ, 2019, 44(5):3157-3169.
[35]JUN J, KIM D, JUN J. Effects of REM Coatings on Electrical Conductivity of Ferritic Stainless Steels for SOFC Interconnect Applications[J]. Solid Oxide Fuel Cells 10(Sofc-X), Pts 1 and 2, 2007, 7(1):2385-2390.
[36]QU W, JIAN L, IVEY D G, et al. Yttrium, cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects[J]. Journal of Power Sources, 2006, 157(1):335-350.
[37]LENKA R K, PATRO P K, SHARMA J, et al. Evaluation of La0.75Sr0.25Cr0.5Mn0.5O3 protective coating on ferritic stainless steel interconnect for SOFC application[J]. Int J Hydrogen Energ, 2016, 41(44):20365-20372.
[38]PRZYBYLSKI K, BRYLEWSKI T, DURDA E, et al. Oxidation properties of the Crofer 22 APU steel coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC interconnect applications[J]. J Therm Anal Calorim, 2014, 116(2):825-834.
[39]ZHU J H, CHESSON D A, YU Y T. Review-(Mn, Co)(3)O-4-Based Spinels for SOFC Interconnect Coating Application[J]. J Electrochem Soc, 2021, 168(11):116508-116517.
[40]BABA Y, KAMEDA H, MATSUZAKI Y, et al. Manganese-Cobalt Spinel Coating on Alloy Interconnects for SOFCs[J]. High-Temperature Oxidation and Corrosion 2010, 2011, 696:406-418.
[41]HOSSEINI S N, KARIMZADEH F, ENAYATI M H, et al. Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer 22 APU stainless steel for SOFC interconnect application[J]. Solid State Ionics, 2016, 289:95-105.
[42]HU Y Z, YUN L L, WEI T, et al. Aerosol sprayed Mn1.5Co1.5O4 protective coatings for metallic interconnect of solid oxide fuel cells[J]. Int J Hydrogen Energ, 2016, 41(44):20305-20313.
[43]PETRIC A, LING H. Electrical conductivity and thermal expansion of spinels at elevated temperatures[J]. J Am Ceram Soc, 2007, 90(5):1515-1520.
[44]胡莹珍,李成新,张山林,等. Mn-Co尖晶石涂层对铁素体不锈钢的高温防护[J].热喷涂技术,2017,3:8-20.
[45]HU Y Z, LI C X, ZHANG S L, et al. The Microstructure Stability of Atmospheric Plasma-Sprayed MnCo2O4 Coating Under Dual-Atmosphere(H-2/Air) Exposure[J]. J Therm Spray Techn, 2016, 25(1-2):301-310.
[46]HU Y Z, YAO S W, LI C X, et al. Influence of pre-reduction on microstructure homogeneity and electrical properties of APS Mn1.5Co1.5O4 coatings for SOFC interconnects[J]. Int J Hydrogen Energ, 2017, 42(44):27241-27253.
[47]李成新,王岳鹏,张山林,等.先进陶瓷涂层结构调控及其在固体氧化物燃料电池中的应用[J].中国表面工程,2017,30(2):1-19.
[48]GAO J T, LI J H, FENG Q Y, et al. High performance of ceramic current collector fabricated at 550 degrees C through in-situ joining of reduced Mn1.5Co1.5O4 for metal-supported solid oxide fuel cells[J]. Int J Hydrogen Energ, 2020, 45(53):29123-29130.
[49]SZYMCZEWSKA D, KARCZEWSKI J, CHRZAN A, et al. CGO as a barrier layer between LSCF electrodes and YSZ electrolyte fabricated by spray pyrolysis for solid oxide fuel cells[J]. Solid State Ionics, 2017, 302:113-117.
[50]TSEPIN TSAI S A B T. Effect of LSM-YSZ cathode on thin-electrolyte cell performance[J]. Solid State Ionics, 1996, 93:207-217.
[51]HWANG C, TSAI C H, LO C H, et al. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode[J]. Journal of Power Sources, 2008, 180(1):132-142.
[52]KIM K J, CHOI G M. Phase stability and oxygen non-stoichiometry of Gd-doped ceria during sintering in reducing atmosphere[J]. J Electroceram, 2015, 35(1-4):68-74.
[53]YI J Y, CHOI G M. The effect of reduction atmosphere on the LaGaO3-based solid oxide fuel cell[J]. J Eur Ceram Soc, 2005, 25(12):2655-2659.
[54]BU J, JöNSSON P G, ZHAO Z. The effect of NiO on the conductivity of BaZr0.5Ce0.3Y0.2O3-δbased electrolytes[J]. Rsc Adv, 2016, 6(67):62368-62377.
[55]TANASINI P, CANNAROZZO M, COSTAMAGNA P, et al. Experimental and Theoretical Investigation of Degradation Mechanisms by Particle Coarsening in SOFC Electrodes[J]. Fuel Cells, 2009, 9(5):740-752.
[56]BALAZS G B, GLASS R S. Ac-Impedance Studies of Rare-Earth-Oxide Doped Ceria[J]. Solid State Ionics, 1995, 76(1-2):155-162.
[57]STOJMENOVIC M, ZUNIC M, GULICOVSKI J, et al. Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells[J]. J Mater Sci, 2015, 50(10):3781-3794.
[58]关丽丽. Ce_(0.9)Gd_(0.1-x)Bi_xO_(1.95-δ)固体电解质烧结过程与离子传导机理的研究[D].哈尔滨:哈尔滨工业大学,2016.
[59]刘维良.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004.
[60]KLEINLOGEL C, GAUCKLER L J. Sintering of nanocrystalline CeO2 ceramics[J]. Adv Mater, 2001, 13(14):1081-1092.
[61]HAN J, ZHANG J, LI F, et al. Low-temperature sintering and microstructure evolution of Bi2O3-doped YSZ[J]. Ceramics International, 2018, 44(1):1026-1033.
[62]KLEINLOGEL C, GAUCKLER L J. Sintering and properties of nanosized ceria solid solutions[J]. Solid State Ionics, 2000, 135(1-4):567-573.
[63]MCPHERSON R. A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings[J]. Surf Coat Tech, 1989, 39(1-3):173-181.
[64]LUGSCHEIDER E, BARIMANI C, ECKERT P, et al. Modeling of the APS plasma spray process[J]. Comp Mater Sci, 1996, 7(1-2):109-114.
[65]WANG Y P, LIU S H, ZHANG H Y, et al. Structured La0.6Sr0.4Co0.2Fe0.8O3-delta cathode with large-scale vertical cracks by atmospheric laminar plasma spraying for IT-SOFCs[J]. J Alloy Compd, 2020, 825:153865-153872.
[66]LIU S H, LI C X, LI L, et al. Development of long laminar plasma jet on thermal spraying process:Microstructures of zirconia coatings[J]. Surf Coat Tech, 2018, 337:241-249.
[67]ZHANG S L, LI C X, LI C J, et al. Scandia-stabilized zirconia electrolyte with improved interlamellar bonding by high-velocity plasma spraying for high performance solid oxide fuel cells[J]. J Power Sources, 2013, 232:123-131.
[68]ABBAS M, SMITH G M, MUNROE P R. Microstructural investigation of bonding and melting-induced rebound of HVOF sprayed Ni particles on an aluminum substrate[J]. Surf Coat Tech, 2020, 402:205-211.
[69]LI C J, LI C X, LONG H G, et al. Performance of tubular solid oxide fuel cell assembled with plasma-sprayed Sc2O3-ZrO2 electrolyte[J]. Solid State Ionics, 2008, 179(27-32):1575-1578.
[70]LI C J, NING X J, LI C X. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells[J]. Surf Coat Tech, 2005, 190(1):60-64.
[71]LI C X, LI C J, YANG G J. Development of a Ni/Al2O3 Cermet-Supported Tubular Solid Oxide Fuel Cell Assembled with Different Functional Layers by Atmospheric Plasma-Spraying[J]. J Therm Spray Techn, 2009, 18(1):83-89.
[72]OHMORI A, LI C J. Quantitative Characterization of the Structure of Plasma-Sprayed Al2o3 Coating by Using Copper Electroplating[J]. Thin Solid Films, 1991, 201(2):241-252.
[73]ARATA Y, OHMORI A, LI C J. Study on the Structure of Plasma Sprayed Ceramic Coating by Using Copper Electroplating[J]. Proceedings of International Symposium on Advanced Ther-mal Spraying Technology and Allied Coatings(ATTAC'88), 1988:205-210.
[74]OHMORI A, LI C J, ARATA Y, et al. Dependence of the connected porosity in plasma sprayed ceramic coatings on structure[J]. J Jpn High Temp Soc, 1990, 16:332-340.
[75]YANG Y C, CHEN Y C. Influences of the processes on the microstructures and properties of the plasma sprayed IT-SOFC anode[J]. J Eur Ceram Soc, 2011, 31(16):3109-3118.
[76]BARTHEL K, RAMBERT S, SIEGMANN S. Microstructure and polarization resistance of thermally sprayed composite cathodes for solid oxide fuel cell use[J]. J Therm Spray Techn, 2000, 9(3):343-347.
[77]HARRIS J, KESLER O. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells[J]. J Therm Spray Techn, 2010, 19(1-2):328-335.
[78]OKUMURA K, AIHARA Y, ITO S, et al. Development of thermal spraying-sintering technol-ogy for solid oxide fuel cells[J]. J Therm Spray Techn, 2000, 9(3):354-359.
[79]KHOR K A, YU L G, CHAN S H, et al. Densification of plasma sprayed YSZ electrolytes by spark plasma sintering(SPS)[J]. J Eur Ceram Soc, 2003, 23(11):1855-1863.
[80]ZHOU X B, HAN Y H, ZHOU J, et al. Ferrite multiphase/carbon nanotube composites sintered by microwave sintering and spark plasma sintering[J]. J Ceram Soc Jpn, 2014, 122(1430):881-885.
[81]MIRAHMADI A, VALEFI K. Densification of Plasma Sprayed SOFC Electrolyte Layer Through Infiltration With Aqueous Nitrate Solution[J]. Journal of Fuel Cell Science and Technology, 2012, 9(1).316-328.
[82]KNUUTTILA J, SORSA P, MANTYLA T. Sealing of thermal spray coatings by impregnation[J]. J Therm Spray Techn, 1999, 8(2):249-257.
[83]NING X J, LI C X, LI C J, et al. Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process[J]. Mat Sci Eng a-Struct, 2006, 428(1-2):98-105.
[84]张山林.等离子喷涂SOFC电解质与掺杂SrTiO3阳极组织结构调控及性能的研究[D].西安:西安交通大学,2015.
[85]李成新,王岳鹏,张山林,等.先进陶瓷涂层结构调控及其在固体氧化物燃料电池中的应用[J].中国表面工程,2017,2:1-19.
[86]ZHANG C, LI C J, LIAO H, et al. Effect of in-flight particle velocity on the performance of plasma-sprayed YSZ electrolyte coating for solid oxide fuel cells[J]. Surf Coat Tech, 2008, 202(12):2654-2660.
[87]CHEN Q Y, LI C X, WEI T, et al. Controlling grain size in columnar YSZ coating formation by droplet filtering assisted PS-PVD processing[J]. Rsc Adv, 2015, 5(124):102126-102133.
[88]HARDER B J, ZHU D. Plasma Spray-Physical Vapor Deposition(Ps-Pvd) of Ceramics for Protective Coatings[J]. Advanced Ceramic Coatings and Materials for Extreme Environments, 2011, 32:73-84.
[89]GORAL M, KOTOWSKI S, NOWOTNIK A, et al. PS-PVD deposition of thermal barrier coat-ings[J]. Surf Coat Tech, 2013, 237:51-55.
[90]MARCANO D, MAUER G, VASSEN R, et al. Manufacturing of high performance solid oxide fuel cells(SOFCs) with atmospheric plasma spraying(APS) and plasma spray-physical vapor deposition(PS-PVD)[J]. Surf Coat Tech, 2017, 318:170-177.
[91]LANG M, HENNE R, SCHAPER S, et al. Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells[J]. J Therm Spray Techn, 2001, 10(4):618-625.
[92]BELLOY L, VILEI E M, GIACOMETTI M, et al. Characterization of LppS, an adhesin of Mycoplasma conjunctivae[J]. Microbiol-Sgm, 2003, 149:185-193.
[93]FAISAL N H, AHMED R, KATIKANENI S P, et al. Development of Plasma-Sprayed Molyb-denum CarbideBased Anode Layers with Various Metal Oxides for SOFC[J]. J Therm Spray Techn, 2015, 24(8):1415-1428.
[94]ZHANG C, LIAO H L, LI W Y, et al. Characterization of YSZ solid oxide fuel cells electro-lyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J]. J Therm Spray Techn, 2006, 15(4):598-603.
[95]TSUKUDA H, NOTOMI A, HISATOME N. Application of plasma spraying to tubular-type solid oxide fuel cells production[J]. J Therm Spray Techn, 2000, 9(3):364-368.
[96]LI C J, NING X J, LI C X. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells[J]. Surface and Coatings Technology, 2005, 190(1):60-64.
[97]HALLER K K, VENTIKOS Y, POULIKAKOS D. Wave structure in the contact line region during high speed droplet impact on a surface:Solution of the Riemann problem for the stiff-ened gas equation of state[J]. J Appl Phys, 2003, 93(5):3090-3097.
[98]YAO S W, LI C J, TIAN J J, et al. Conditions and mechanisms for the bonding of a molten ce-ramic droplet to a substrate after high-speed impact[J]. Acta Mater, 2016, 119:9-15.
[99]VARDELLE A, THEMELIS N J, DUSSOUBS B, et al. Transport and chemical rate phenomena in plasma sprays[J]. High Temperature Material Processes, 1997, 1(3):295-313.
[100]LI C J, YANG G J, LI C X. Development of Particle Interface Bonding in Thermal Spray Coat-ings:A Review[J]. Journal of Thermal Spray Technology, 2012, 22(2-3):192-206.
[101]WANG J, LUO X T, LI C J, et al. Effect of substrate temperature on the microstructure and interface bonding formation of plasma sprayed Ni20Cr splat[J]. Surface and Coatings Technol-ogy, 2019, 371:36-46.
[102]MORKS M F, TSUNEKAWA Y, OKUMIVA M, et al. Splat morphology and microstructure of plasma sprayed cast iron with different preheat substrate temperatures[J]. Journal of Thermal Spray Technology, 2002, 11(2):226-232.
[103]YAO S W, TIAN J J, LI C J, et al. Understanding the Formation of Limited Interlamellar Bond-ing in Plasma Sprayed Ceramic Coatings Based on the Concept of Intrinsic Bonding Tempera-ture[J]. J Therm Spray Technol, 2016, 25(8):1617-1630.
[104]WANG Y P, GAO J T, LI J H, et al. Preparation of bulk-like La0.8Sr0.2Ga0.8Mg0.2O3-delta coatings for porous metal-supported solid oxide fuel cells via plasma spraying at increased par-ticle temperatures[J]. Int J Hydrogen Energ, 2021, 46(64):32655-32664.
[105]LI C X, XIE Y X, LI C J, et al. Characterization of atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte[J]. J Power Sources, 2008, 184(2):370-374.
[106]ZHANG SL, LIU T, LI CJ, et al. Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 elec-trolyte membranes for intermediate-temperature solid oxide fuel cells[J]. J Mater Chem A, 2015, 3(14):7535-7553.
[107]MA X Q, ZHANG H, DAI J, et al. Intermediate temperature solid oxide fuel cell based on fully integrated plasma-sprayed components[J]. J Therm Spray Techn, 2005, 14(1):61-66.
[108]CODDET P, LIAO H L, CODDET C. A review on high power SOFC electrolyte layer manu-facturing using thermal spray and physical vapour deposition technologies[J]. Advances in Manufacturing, 2014, 2(03):212-221.
[109]REFKE A, GINDRAT M, NIESSEN K V, et al. LPPS Thin Film:A Hybrid Coating Technology between Thermal Spray and PVD for Functional Thin Coatings and Large Area Applications[C]//TSC2007.BEIJING:ITSC2007, 2007:705-710.
[110]YOSHIDA T. Towards a new era of plasma spray processing[J]. Pure Appl. Chem, 2006, 78(6):1093-1107.
[111]HOSPACH A, MAUER G, VAßEN R, et al. Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying(LPPS-TF)[J]. J Therm Spray Techn, 2012, 21(3): 435-440.
[112]WANG X H, EGUCHI K, IWAMOTO C, et al. High-rate deposition of nanostructured SiC films by thermal plasma PVD[J]. Science and Technology of Advanced Materials, 2002, 3(4):313-317.
[113]RAY E R, SPENGLER C J, HERMAN H. Solid oxide fuel cell processing using plasma arc spray deposition techniques. Final report[R/OL].(1991-06-01)[2022-10-11].https://doi. org/10.2172/10169590.
[114]HARRIS J, KESLER O. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells[J]. J Therm Spray Techn, 2010, 19:328-335.
[115]HENNE R, SCHILLER G, BORCK V, et al. SOFC Components Production-An Interesting Challenge for DC-and RF-Plasma Spraying[J].ITSC, 1998, 09(33):933-938.
[116]GAO M, LI C J, LI C X, et al. Microstructure, oxygen stoichiometry and electrical conductivity of flame-sprayed Sm0.7Sr0.3CoO3-δ[J]. Journal of Power Sources, 2009, 191(2):275-279.
[117]ZHANG S L, LIU T, LI C J, et al. Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells[J]. J Mater Chem A, 2015, 3(14):7535-7553.
[118]SZABO J A, FRANCO T, GINDRAT M, et al. Progress in the Metal Supported Solid Oxide Fuel Cells and Stacks for APU[J]. Ecs Transactions, 2009, 25(2):175-185.
[119]ANSAR A, SZABO P, ARNOLD J, et al. Metal Supported Solid Oxide Fuel Cells and Stacks for Auxilary Power Units-Progress, Challenges and Lessons Learned[J]. Ecs Transactions, 2011, 35:147-155.
[120]ANSAR A, SZABO P, ARNOLD J, et al. Metal Supported Solid Oxide Fuel Cells and Stacks for Auxiliary Power Units-Progress, Challenges and Lessons Learned[J]. Solid Oxide Fuel Cells 12(Sofc Xii), 2011, 35(1):147-155.
[121]HICKEY M A, SHAPIRO A, BROWN K, et al. Stack Development at GE-Fuel Cells[J]. Ecs Transactions, 2017, 78(1):107-116.
[122]SCHILLER G. Progress in Metal-Supported Solid Oxide Fuel Cells[R].Cologne: German Aerospace Center, 2011.
[123]JANG Y H, LEE S, SHIN H, et al. Development and Evaluation of 3-layer Metal Supported Solid Oxide Fuel Cell Short Stack[J]. Ecs Transactions, 2017, 78(1):2045-2050.
[124]JANG Y H, LEE S, SHIN H Y, et al. Development and evaluation of a 3-cell stack of metal-based solid oxide fuel cells fabricated via a sinter-joining method for auxiliary power unit ap-plications[J]. Int J Hydrogen Energ, 2018, 43(33):16215-16229.
[125]CHRISTIANSEN N, HANSEN J B, HOLM-LARSEN H, et al. Status of Development and Manufacture of Solid Oxide Fuel Cells at Topsoe Fuel Cell A/S and Riso DTU[J]. Solid Oxide Fuel Cells 11(Sofc-Xi), 2009, 25(2):133-142.