购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1] 陈俊勇.地球空间信息的实时获取及其应用.测绘通报,1998,09:1-2.

[2] 周成虎,鲁学军.对地球信息科学的思考.地理学报,1998,04:86-94.

[3] 李德仁,李清泉.论地球空间信息科学的形成.地球科学进展,1998,04:2-9.

[4] 李德仁,李清泉.地球空间信息学与数字地球.地球科学进展,1999,06:535-540.

[5] 刘纪平,常燕卿,李青元.空间信息可视化的现状与趋势.测绘学院学报,2002,19(3):207-210.

[6] 李德仁,李清泉.论地球空间信息技术与通信技术的集成.武汉大学学报(信息科学版),2001,01:1-7.

[7] 童庆禧.地球空间信息科学之刍议.地理与地理信息科学,2003,04:1-3.

[8] 李德仁.论天地一体化的大测绘——地球空间信息学.测绘科学,2004,03:1-2+4.

[9] 李德仁.地球空间信息学的机遇.武汉大学学报(信息科学版),2004,09:753-756.

[10] 陈雁,龚育昌,万寿红,等.针对小目标的遥感图像解译识别系统.计算机工程,2009,35(14):10-12.

[11] 秦其明.遥感图像自动解译面临的问题与解决的途径.测绘科学,2000,25(2):21-24.

[12] 李德仁.地球空间信息学及在陆地科学中的应用.自然,2005,06:316-322.

[13] 李德仁.论广义空间信息网格和狭义空间信息网格.中国测绘学会第八次全国会员代表大会暨2005年综合性学术年会论文集,2005:10.

[14] 童小华.地球空间信息科学的内涵与发展.世界科学,2006,02:20-22.

[15] 孙剑.基于虚拟地球技术的空间信息集成.济南:山东科技大学学位论文,2007.

[16] 李德仁,李清泉,杨必胜,等.3S技术与智能交通.武汉大学学报(信息科学版),2008,04:331-336.

[17] 龚健雅,李德仁.论地球空间信息服务技术的发展.测绘通报,2008,05:5-10.

[18] 杨玉华.地球空间信息.中国测绘学会九届四次理事会暨2008年学术年会论文集,2008:6.

[19] 李德仁.论地球空间信息的3维可视化:基于图形还是基于影像.测绘学报,2010,02:111-114.

[20] 刘经南.GNSS连续运行参考站网的下一代发展方向——地基地球空间信息智能传感网络.武汉大学学报(信息科学版),2011,03:253-256+250.

[21] 唐卫平,颜冰.多传感器信息融合技术在网络雷阵中的应用.水雷战与舰船防护,2005,02:25-29.

[22] 毕晓佳,汪宝存,徐华全,等.基于空间信息技术的地震灾害监测评估.中国地质灾害与防治学报,2012,02:116-121.

[23] 柳林,李德仁,李万武,等.从地球空间信息学的角度对智慧地球的若干思考.武汉大学学报(信息科学版),2012,10:1248-1251.

[24] 李明江.基于数字地球平台的城市地下空间信息管理与可视化.上海:华东师范大学学位论文,2013.

[25] 李元征,吴胜军,冯奇,等.光谷地球空间信息产业发展技术路线图研究.世界科技研究与发展,2013,02:303-309.

[26] 程承旗,付晨.地球空间参考网格及应用前景.地理信息世界,2014,03:1-8.

[27] 许晔,左晓利,张俊祥,等.我国地球空间信息及服务产业现状与发展建议.科学管理研究,2015,06:47-51.

[28] 李德仁,沈欣等.论我国空间信息网络的构建.武汉大学学报(信息科学版),2015,06:711-715+766.

[29] 王晓明,刘瑜,张晶.地理空间认知综述.地理与地理信息科学,2005,2(6):1-10.

[30] 李德仁.展望大数据时代的地球空间信息学.测绘学报,2016,04:379-384.

[31] 中国测绘学会课题专家组:宁津生,杨凯,周德军,易杰军.2020年中国地球空间信息科学和技术发展研究.2020年中国科学和技术发展研究(下),2004.

[32] 张云峰,卢灿举,李超.多源信息融合软件的设计与实现.无线互联科技,2016,06:54-56.

[33] 陈科文,张祖平,龙军.多源信息融合关键问题、研究进展与新动向.计算机科学,2013,40(08):6-13.

[34] 张飞舟,杨东凯,陈智.物联网技术导论.北京:国防工业出版社,2010.6.

[35] 范玉茹.浅析GI S空间信息不确定性研究的若干问题.测绘与空间地理信息,2008,31(04):21-22,27.

[36] 王惠林.基于知识的遥感图像分类方法研究——以腾格里沙漠南部地区为例.兰州:兰州大学研究生学位论文,2007.

[37] 赵姗,王家耀,王冲.基于网格虚拟组织的空间数据基础设施探讨.测绘科学技术学报,2008,25(04):280-283.

[38] 许晔,左晓利.中国地球空间信息及服务产业技术路线图研究.中国科技论坛,2016,04:30-36.

[39] 张飞舟,杨东凯,张弛.智慧城市及其解决方案.北京:国防工业出版社,2015.

[40] 化柏林,李广建.大数据环境下多源信息融合的理论与应用探讨.图书情报工作,2015,59(16):5-9.

[41] 唐卫平,颜冰.多传感器信息融合技术在网络雷阵中的应用.水雷战与舰船防护,2005,(02):25-29.

[42] 张金槐.多源信息的Bayer融合精度鉴定方法.国防科技人学学报,2001,(3):93-97.

[43] 张新民.多元表示与情报学.情报理论与实践,2009,32(07):23-28.

[44] 张新民,罗卫东.相关性与情报学.情报理论与实践,2008,31(01):12-14,64.

[45] 曾丹.基于意义建构信息利用偏差弥合的释义.武汉理工人学学报(社会科学版),2012,25(04):636-641.

[46] 化柏林.多源信息融合方法研究.情报理论与实践,2013,13:16-19.

[47] 陈科文,张祖平,龙军.多源信息融合关键问题、研究进展与新动向.计算机科学,2013,40(08):6-13.

[48] 李德仁.地球空间信息学的使命.科技导报,2011,29:3.

[49] 张飞舟,杨东凯.物联网应用与解决方案.北京:国防工业出版社,2012.

[50] 化柏林.多源信息融合方法研究.情报理论与实践,2013,(11):16-19.

[51] 郭庆胜,任晓燕.智能化地理信息处理.武汉:武汉大学出版社,2003.

[52] Das S,Ascano R,Macarty M.Distributed big data search for analyst queries and data fusion.2015 18th International Conference on Information Fusion,Fusion 2015:666-673.

[53] Alonso K,Datcu M.Image information mining:an accelerated Bayesian algorithm for data fusion of SAR big data.Proceedings of 10th European Conference on Synthetic Aperture Radar,EUSAR 2014:604-607.

[54] Zhan X L,Cai Y J,Liu D.Research on ultrasonic phased array imaging based on information fusion and GPU technologies.2014 International Conference on Mechatronics,Electronic,Industrial and Control Engineering,MEIC 2014:573-1576.

[55] Fouad M M,Oweis N E,Gaber T,Ahmed M,Snasel V.Data mining and fusion techniques for WSNs as a source of the big data.International Conference on Communications,Management,and Information Technology,ICCMIT 2015,Procedia Computer Science,65:778-786.

[56] Wang Y H.Socializing multimodal sensors for information fusion.MM 2015Proceedings of the 2015 ACM Multimedia Conference,p 653-656.

[57] Zhang W,Xiao R D,Deng J.Research of traffic flow forecasting based on the information fusion of BP network sequence.Intelligence Science and Big Data Engineering:Big Data and Machine Learning Techniques-5th International Conference,IScIDE 2015,Revised Selected Papers,Lecture Notes in Computer Science,9243:548-558.

[58] Solano M A,et al.High-level fusion for intelligence applications using recombinant cognition synthesis.Information Fusion,2012,13(1):79-98.

[59] Khaleghi B,Khamis A,Karray I O.Multisensor data fusion:a review of the stater of the art.Information Fusion,2013,14(1):28-44.

[60] Blasch E,Al-Nashif Y,Hariri S.Static versus dynamic data information fusion analysis using DDDAS for cyber security trust.Procedia Computer Science,2014,29:1299-1313.

[61] Jagadish H V,Gehrke J,Labrinidis A,et al.Big data and its tech nical challenges. Communications of the ACM,2014,57(7):86-94.

[62] Lin G P,Liang J,Qian Y H.An information fusion approach by combining multigranulation rough sets and evidence theory.lnformation Sciences,2015,314:184199 .

[63] Safari S,Shabani F,Simon D.Multirate multisensor data fusion for linear systems using Kalman filters and a neural network.Aero-space Science and Technology,2014,39(12):456-471.

[64] Si L,Wang G B,Tan C,et al.A novel approach for coal seam terrain prediction through information fusion of improved Sevidence theory and neural network.Measurement,2014,54(8):140-151.

[65] Suk H H,Lee S W,Shen D G.Hierarchical feature representation and multimodal fusion with deep learning for AD/MCl diagnosis.Neuroimage,2014,101:569-582.

[66] Khaleghi B,Khamis A,Karray I O.Multisensor data fusion:a review of the stater of the girt.Information Fusion,2013,14(1):28-44.

[67] Yager R R.A framework for multi-source data fusion.lnformation Sciences,2004,163(1):175-200.

[68] Suk H I,Lee S W,Shen D G.Hierarchical feature representation and multimodal fusion with deep learning for AD/MCl diagnosis.Neuroimage,2014,101:569-582.

[69] Solano M A,Ekwaro-Osire S,Fanik M M.High-level fusion for intelligence applications using recombinant cognition synthesis.Information Fusion,2012,13(1):79-98.

[70] Safari S,Shabani F,Simon D.Multirate multisensor data fusion for linear systems using Kalman filters and a neural network.Aero-space Science and Technology,2014,39(12):465-471.

[71] Lin G P,Liang J,Qian Y H.An information fusion approach by combining multigranulation rough sets and evidence theory.Information Sciences,2015,314:184-199.

[72] Garcia E,Hausotte T,Amthor A.Bayer filter for dynamic coordinate measurementsaccurac improvement,data fusion and measurement uncertainty evaluation. Measurement,2013,46(9):3737-3744.

[73] Si L,Wang G B,Tan C,et al.A novel approach for coal seam terrain prediction through information fusion of improved D-S evidence theory and neural network.Measurement,2014,54(8):140-151.

[74] Chang V,Gani A.Information fusion in social big data:foundations,state-of-theart,applications,challenges,and future research directions.International Journal of Information Management,April 19,2016.

[75] Jagadish H V,Gehrke J,Labrinidis A,et al.Big data and its technical challenges.Communications of the ACM,2014,57(7):86-94.

[76] Sanchez P,Nayat M L,Molina J M,Bicharra G,Ana C.High-level information fusion for risk and accidents prevention in pervasive oil industry environments.Highlights of Practical Applications of Heterogeneous Multi-Agent Systems:The PAAMS Collection-PAAMS 2014 International Workshops Communications in Computer and Information Science,2014,430:202-213.

[77] Naumann F,Jilke A,Bleiholder J,et al.Data fusion in three steps:resolving inconsistencies at schem tuple and value-leve1.Data Engineering Bulletin,2006,29(2):21-31.

[78] Chenlo J M,Parapar J,Losada D E,Santos J.Finding a needle in the blogosphere:an information fusion approach for blog distillation search.Information Fusion,2015,23:58-68.

[79] Meng J,Li R,Zhang J.Parallel information fusion method for microarray data analysis.Proceedings-2015 IEEE International Conference on Big Data,IEEE Big,2015:1539-1544.

[80] Li G X,Kou G,Peng Y.Fuzzy information fusion approach for supplier selection.International Conference on Oriental Thinking and Fuzzy Logic-Celebration of the 50th Anniversary in the era of Complex Systems and Big Data,Advances in Intelligent Systems and Computing,2016,443:51-63.

[81] Perdikaris P,Venturi D,Em K G.Multifidelity information fusion algorithms for highdimensional systems and massive data sets.SIAM Journal on Scientific Computing,2016,38(4):B521-B538.

[82] Xu W H,Yu J H.A novel approach to information fusion in multi-source datasets:a granular computing viewpoint.Information Sciences,2017,378:410-423.

[83] Camacho D,Jung J J.Guest editorial:social big data with information fusion.Information Fusion,2016,28:44. ikoWByFW2y+RbbdD6Bup7idhWSUwV4UNKcLEOR3oI4STMQbkQ59eIhb5xbOdrfqy

点击中间区域
呼出菜单
上一章
目录
下一章
×