[1]Chua L O, Yang L. Cellular neural networks: theory and applications [J]. IEEE Transactions on Circuits and Systems, 1988, 35 (1): 1257-1290.
[2]Chua L O, Roska T. Cellular neural networks with nonlinear and delay-type template elements [C]//Proceedings of the International Workshop on Cellular Neural Networks and Their Applications, 1990, 90: 12-25.
[3]Roska T, Chua L O. Cellular neural networks with nonlinear and delay-type template elements and nonuniform grids [J]. International Journal of Circuit Theory and Applications. 1992, 20 (5): 469-481.
[4]Arik S, Tavsanoglu V. Equilibrium analysis of delayed CNNs [J]. IEEE Transactions on Circuits and Systems, 1998, 45 (2): 168-171.
[5]Guo S, Huang L. Periodic oscillation for a class of neural networks with variable coefficients [J]. Nonlinear Analysis: Real World Application, 2005, 6 (3): 545-561.
[6]刘艳青,唐万生.带有周期系数和时滞的细胞神经网络模型的周期解存在性和全局指数稳定性[J].工程数学学报,2007,24(6):995-1006.
[7]Liao X, Wang J, Zeng Z. Global asymptotic stability and global exponential stability of delayed cellular neural networks [J]. IEEE Transactions on Circuits and SystemsⅡ, 2005, 52 (7): 403-409.
[8]He Y, Wu M, She J. An improved global asymptotic stability criterion for delayed cellular neural networks [J]. IEEE Transactions on Neural Networks, 2006, 17 (1): 250-252.
[9]Yang Y Q, Cao J. Stability and periodicity in delayed cellular neural networks with impulsive effects [J]. Nonlinear Analysis: Real World Applications, 2007, 8 (1): 362-374.
[10]刘友德,张建华,关新平,等.基于LMI的时滞细胞神经网络的全局渐近稳定性分析[J].应用数学和力学,2008,29(6):735-740.
[11]Ozcan N. A new sufficient condition for global robust stability of delayed neural networks [J]. Neural Processing Letters, 2011, 34 (3): 305-316.
[12]Chen W, Zheng W. A new method for complete stability stability analysis of cellular neural networks with time delay [J]. IEEE Transactions on Neural Networks, 2010, 21 (7): 1126-1137.
[13]Kao Y, Gao C. Global exponential stability analysis for cellular neural networks with variable coefficients and delays [J]. Neural Computing and Applications, 2008, 17 (3): 291-296.
[14]Zeng Z G, Wang J. Complete stability of cellular neural networks with time-varying delays [J]. IEEE Transactions on Circuits and Systems-I, 2006, 53 (5): 944-955.
[15]Hu L, Gao H J, Zheng W X. Novel stability of cellular neural networks with interval time-varying delay [J]. Neural Networks, 2008, 21 (10): 1458-1463.
[16]Chen W, Zheng W. Global exponential stability of impulsive neural networks with variable delay: An LMI approach [J]. IEEE Transactions on Circuits and Systems, 2009, 156 (6): 1248-1259.
[17]He H, Yan L, Tu J. Guaranteed cost stabilization of time-varying delay cellular neural networks via Riccati inequality approach [J]. Neural Processing Letters, 2012, 35 (2): 151-158.
[18]Tu J, He H, Xiong P. Guaranteed cost synchronous control of time-varying delay cellular neural networks [J]. Neural Computing and Applications, 2013, 22 (1): 103-110.
[19]Zhang Y, Pheng A H, Kwong SL. Convergence analysis of cellular neural networks with unbounded delay [J]. IEEE Transactions on Circuits and Systems I, 2001, 48 (6): 680-687.
[20]钟守铭,黄廷祝,黄元清.具有无穷时滞的细胞神经网络的稳定性分析[J].电子学报,2001,29(5):626-629.
[21]Huang C, Cao J D. Almost sure exponential stability of stochastic cellular neural networks with unbounded distributed delays [J]. Neurcomputing, 2009, 72 (13-15): 3352-3356.
[22]Tan M C. Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays [J]. Neural Processing Letters, 2010, 31 (2): 147-157.
[23]Li T, Song A, Fei S, et al. Delay-derivative-dependent stability for delayed neural networks with unbound distributed delay [J]. IEEE Transactions on Neural Networks, 2010, 21 (8): 1365-1371.
[24]Feng Z, Lam J. Stability and dissipativity analysis of distributed delay cellular neural networks [J]. IEEE Transactions on Neural Networks, 2011, 22 (6): 981-997.
[25]Zhou L Q. On the global dissipativity of a class of cellular neural networks with multipantograph delays [J]. Advances in Artificial Neural Systems, 2011, DOI: 10. 1155/2011/941426.
[26]Zhou L Q. Delay-dependent exponential stability of cellular neural networks with multi-proportional delays [J]. Neural Processing Letters, 2013, 38 (3): 347-359.
[27]周立群.多比例时滞细胞神经网络的指数周期性与稳定性[J].生物数学学报,2012,27(3):480-487.
[28]张迎迎,周立群.一类具多比例延时的细胞神经网络的指数稳定性[J].电子学报,2012,40(6):1159-1163.
[29]周立群,刘纪茹.一类具比例延时的细胞神经网络的全局渐近稳定性[J].工程数学学报,2013,30(5):673-682.
[30]刘纪茹,周立群.基于LMI的比例时滞细胞神经网络的全局渐近稳定性[J].天津师范大学学报:自然科学版,2014,34(4):10-13.
[31]Zhou L Q. Dissipativity of a class of cellular neural networks with proportional delays [J]. Nonlinear Dynamics, 2013, 73 (3): 1895-1903.
[32]Zhou L Q. Global asymptotic stability of cellular neural networks with proportional delays [J]. Nonlinear Dynamics, 2014, 77: 41-47.
[33]Liu B W. Global exponential convergence of non-autonomous cellular neural networks with multi-proportional delays [J]. Neurocomputing, 2016, 191: 352-355.
[34]Yu Y. Finite-time stability on a class of non-autonomous SICNNs with multi-proportional delays [J]. Asian Journal of Control, 2017, 19 (1): 87-94.
[35]Khalil H K. Nonlinear system [M]. New York: Macmillan, 1988.