购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

第1章
空间游戏

在这一章中,你将邂逅5款游戏,每款游戏都属于不同的领域。如果你在读完本章后只能掌握1个知识点,我希望你至少知道: 空间有不同的种类。

点格棋始于一个结构严谨的矩形网格——很像一座规划合理的城市。抽芽游戏在一片蜿蜒流淌的梦境中展开。终极井字棋设想了一个涵盖微观、宏观和回声的分形世界。蒲公英游戏描绘了一片被风吹过的田野,遵循着严格的风向。而量子井字棋则被设定在一个非常怪异的空间里(几乎没有空间的感觉)。当把这些游戏放在一起时,你就会明白为什么数学家在谈论“几何学”这一概念时通常使用的是“geometries”,而不是“geometry”,因为每种几何的概念化空间及其内容完全不同。“一种几何并不会比另一种几何更正确,”数学家亨利·庞加莱写道,“它只可能更方便。”

然而,这些多样化的游戏有一个共同点:它们都是平面的。它们是试图照亮三维世界的二维体验,就像水中的倒影一样。

作为现代人,这是一个有趣的体验。我们的祖先像人猿“泰山”一样从一棵树荡到另一棵树,而我像珍妮一样从一本书荡到另一本书,从一页荡到另一页,从一张纸荡到另一张纸。我的大脑是为有深度、动态化的三维世界而构建的,我却把它交付给了一个由文档和屏幕组成的二维世界,用这些薄片映照厚重的现实。

好吧,如果我们无法把人猿带回丛林,几何游戏就会做出一个最好的抉择:把丛林还给人猿。它们把平面世界变成了有深度的世界,把二维转变为了三维。接下来,我将通过3个简单的有奖游戏向你展示这个过程。

第一个把二维转变为三维的有奖游戏是1979年的经典街机游戏《小行星》,玩家可以在游戏机屏幕上操纵一艘箭头形状的飞船。在游戏中,屏幕就是整个宇宙:如果你的飞船从一边边缘飞出去,就会重新出现在对侧另一边。由此产生的体验就像在球体上一样,飞船无论向哪个方向移动,最终都会回到起始位置。

然而,这个屏幕实际上并不是球体。首先,通过连接屏幕的左右边缘,游戏设计师创造了一个圆柱形的世界。然后,他们又通过连接屏幕的顶部和底部边缘,连接了这个圆柱体的顶端和底部。如此一来,得到的并不是球体,而是类似于甜甜圈的形状,被数学死忠粉们称为“环面”。 [1]

哇,原来小行星栖息在一个环形宇宙中,应该要把这件事告诉美国国家航空航天局。

第二个把二维变成三维的游戏来自比利时数学家英格丽·多贝西(Ingrid Daubechies)。她曾回忆说:“那时我才八九岁,玩洋娃娃时,我最喜欢做的事就是给它们做衣服。人们通过将平面的织物拼接在一起,制作出曲面的事物,这让我觉得很神奇。”

几十年后,她在微波方面的研究推动了图像压缩技术的发展。在某种意义上,这是同一个游戏:平面度和曲率,体积和表面积,厚度和压缩。

在我看来,几何不过是给你的洋娃娃打扮的古老数学运算。

第三个把二维变成三维的游戏来自荷兰艺术家M.C. 埃舍尔(M. C.Escher)。或许你早就见过他的一些作品:两只手互相描绘、鸟和鱼的拼块镶嵌图、一个不可思议的楼梯(一直向上、向上、向上……)。数学家喜欢埃舍尔的作品是因为其与他们的作品一样,都是对深奥思想的玩弄。“这是一种乐趣,”他写道,“有意地混淆二维和三维,平面和空间,玩转重力。”另外,他还喜欢说:“我所有的作品都是游戏,严肃的游戏。”

对我来说,想要探索不同的几何世界,没有比玩游戏和解谜题更好的方法了。用数学家约翰·尤索(John Urschel)的话来说:“如此一来,我们便能一瞥各种可能的思维途径。”它们能让我们以简洁而生动的形式体验到完全不同的现实。

你我骨子里都是人猿,我们会不由自主地展开空间思维。所以,当空间中有成千上万种味道和风格,而且一种比一种奇特,一种比一种奇妙时,对我们来说当然是件好事。

[1] 在《经典游戏的新规则》( New Rules for Classic Games )一书中,R. 韦恩·施米特伯格(R.Wayne Schmittberger)建议将《小行星》的空间逻辑应用到拼字游戏中。这样一来,单词就可以从底部消失,然后再次出现在顶部,或者从右侧边缘消失,然后再次出现在左侧。他写道:“环形拼字游戏的有趣结果之一,就是会出现按照传统拼字游戏标准,不但不合规,而且非常可笑的情况。比如一个单词片段或单个字母会飘浮在棋盘边缘,看起来与任何东西都无关,但实际上它是另一个处于边缘的单词的一部分。这是能让那些喜欢乱出主意的人不知所措的好办法。”我建议将同样的环形逻辑应用于本书中的其他游戏,如抽芽游戏、顺序游戏和亚马逊棋。 SsG/nWZ8fr1JSFx7jciEd4ZKn+NK/NRACWAHKePqPrNnhfVpNBBRkiiRewOTfvwV



点格棋

格子游戏

数学家埃尔温·伯利坎普(Elwyn Berlekamp)在《点格棋:复杂的儿童游戏》( Dots and Boxes Sophisticated Child's Play )一书的前言中宣称,这个游戏是“世界上数学含量最丰富且最受欢迎的儿童游戏”。这句话的原文稍微有些歧义,但不管他的意思是说这是一款面向受欢迎的孩子的复杂游戏,还是一款面向成熟孩子的受欢迎的游戏,抑或是一款面向富有且受欢迎的孩子的复杂且世俗的游戏,其传达出的信息都是明确的:这款游戏非常棒。

由于篇幅所限,在本节中,我无法为你们展示完整的点格棋理论。不过,我接下来要展示的东西更棒:完整的数学探究理论,来自第一个发明这个游戏规则的学者。

如果你问我阅读以下文字会不会让你变成一个富有、受欢迎、成熟的孩子,虽然我不能给你法律意义上的保证,但是你看到我在眨眼了吧?懂了吗?跟我冲!

这个游戏怎么玩?

你需要准备什么? 2名玩家、2支不同颜色的笔和一系列点。我推荐6×6的点,但也不一定,只要是能组成矩形的一系列点都可以。

玩家的目标是什么? 比对手占领更多的格子。

游戏的规则是怎样的呢?

(1)玩家轮流画出垂直或水平的短线,以 连接相邻的点

(2) 谁画出一个小格子的第4条线,谁就可以宣布这个格子被自己占领了 (可以在里面写上自己的名字),然后 直接走下一步

这条规则可以让你在对手有机会再次移动之前连续占领几个格子。

(3)一直玩到网格被画满, 最终谁占领的格子多,谁就是赢家

游戏体验笔记

我第一次玩这款游戏是童年时在地下室玩的,四周摆满了放录像带的架子,不时还会传来楼上大人们经过时的脚步声。我和几个兄弟姐妹都缺乏战略经验:大家的行动几乎是随机的,只是在努力确保不要在任何格子上画第3条线(因为这会“帮助”你的对手画第4条线),而且不论我们愿不愿意,最后网格里的标记都会分散得毫无章法。 直到游戏进行至某个时刻,已经没有安全的地方可以画,事态就开始变得紧张起来。

这时,牺牲已经是不可避免的了,但并不是所有的牺牲都有同等的价值。有些招式可能只会让给对手1~2个格子,而另一些几乎会让给对手整个棋盘。我总是尽量让出最小的区域,把较大的区域留给自己。

多年以后,也就是在写这本书时,我领悟到了其中一个关键策略。这个策略执行起来很简单,但足以击败99%的新手,那就是, 一箭双雕 。具体方法是,当对手准备在下一回合占领某个格子时,不要给他机会。取而代之,你可以跳过倒数第二步,缩短自己的回合。这样你只牺牲了2个格子,而对手则需要通过画一条线来获得这2个格子(因此被称为“一箭双雕”)。作为交换,你将得到对手所关注的整个区域。

在这一策略层面之外,当你试图控制已成形区域的大小和结构时,一切都将变得模糊而复杂。如果想了解这些细节,你可以参考伟大的已故数学家埃尔温·伯利坎普的著作。他在我写这本书期间去世了,我们将永远怀念这个精明、成熟的“大孩子”。

这个游戏从何而来?

今天,你会在很多地方看到点格棋的身影,黑板、白板、硬纸板、便笺、餐巾纸,甚至在某些极端情况下,裸露的手臂上也会出现。 它首次被提及是在数学家爱德华·卢卡斯 于1889年出版的《点格棋》( La Pipopipette )一书中。卢卡斯把该游戏的发明归功于他在著名的巴黎综合理工学院任教时的几名学生。

这不由得让人疑惑,为什么这些名校的学生会花时间研究面向儿童的游戏?为什么像卢卡斯这样受人尊敬的学者会选择设计这样一款游戏?

因为严肃的数学往往来自幼稚的游戏。

我们在卢卡斯本人的职业生涯中也看到了这种模式。他最著名的可能是关于斐波那契数列的研究,其中每个数都是前2个数的和(经典数列从“1,1,2,3,5,8”开始,以此类推)。斐波那契数列看起来像个愚蠢的游戏,然而,当你开始数松果上的凸起、雏菊的花瓣或菠萝表面的小果眼儿时,将会意识到这个愚蠢的游戏不仅孩子们(以及不成熟的成年人)在玩,大自然自己也在玩。

或者以炮弹问题为例,这是卢卡斯喜欢的另一个游戏。这个游戏需要求出当炮弹的数量为多少时,炮弹既可以堆成一个正方体,又可以堆成一个正四面体金字塔。这个谜题毫无意义,但解题难度是地狱级别的。经过推算,卢卡斯认为,已知的答案(4 900枚炮弹)是这个游戏唯一的解。几十年后,人们对椭圆函数的进一步研究最终证明他是对的。

还可以了解一下卢卡斯最著名的发明:河内塔。你之前可能见过,它有3根立柱和1组圆盘,初始状态是圆盘按从大到小的顺序从底部往上套叠在其中一根立柱上,形成一座塔。玩家的目标是将整座塔从一根立柱转移到另一根立柱上,每次只能移动一个圆盘,而且要保证大的圆盘不放在小的圆盘上。

无论是从外观还是从内涵上,这座塔——怎么说呢——看起来都像一个婴儿玩具。然而,人们已经给河内塔找到了各种各样的实际用途:心理学家利用它测试认知能力,计算机科学教授用它来讲授递归算法,软件工程师把它作为一个备份数据的轮换方案。

游戏是如何如此轻易地混入科学研究中的呢?为什么工作和娱乐之间的界限是如此模糊、如此混乱?

说句实话,我真不知道,估计卢卡斯也不知道。我们只能说,简单的数学原理一次又一次地产生深远的影响。这就是数学——复杂的相互作用中的简单概念。正如卢卡斯在谈到点格棋时所言:“它的玩法虽然简单,却能源源不断地带来惊喜。”

为什么这个游戏很重要?

因为无用的游戏往往能产生最有用的见解。

在《点格棋》一书中,爱德华·卢卡斯用很长的篇幅介绍了纯粹的好奇心的价值。通过列举历史中的一系列事例,他提出我们必须为了问题本身而追问问题,不管这些问题看起来有多愚蠢,因为我们永远不知道自己可能会发现什么深刻的真相。

他的辞藻虽然华丽得过了头,但仍然值得引用。

② 塔尔塔利亚(Tartaglia,1499或1500—1557),原名尼科洛·丰坦纳(Niccolò Fontana),意大利数学家和工程师,对弹道和抛体问题的研究有着开创性的贡献。——译者注

所有数学家都在孜孜不倦地探索不同思想之间的深层联系。问题是,该怎么做呢?更加努力地寻找?或许是个办法。更加耐心地计算?不一定会有好结果。在书中查找答案?不好意思,你离正确答案越来越远了。依靠想象力的飞跃?对了,这就是我们接下来要讨论的。

爱德华·卢卡斯认为,深奥的原理来自玩乐,科学来自愚笨。他并不是唯一这样想的人。埃尔温·伯利坎普6岁时接触到点格棋,70年后,他仍在玩这个游戏。因此,可以说这个游戏陪伴了他一生。在麻省理工学院电气工程专业学习时,他突然意识到可以用数学将点格棋游戏转化为等价的“二元游戏”,并将其称为“绳子与硬币”游戏。

那么,点格棋的这个替代版是怎样的呢?想象一下,用几根绳子将一堆硬币连在一起。每根绳子的一端粘在一枚硬币上,另一端粘在另一枚硬币(或桌子)上。玩家轮流用剪刀把绳子剪断。如果绳子被剪断后释放了一枚硬币,你就能把这枚硬币装进口袋,然后继续剪绳子。当最后一枚硬币被释放时,谁口袋里的硬币多,谁就是赢家。

在“绳子与硬币”游戏中,没有格子,只有硬币;不画线,只剪绳子。但这两个游戏在本质上是一样的。在没有改变核心结构的情况下,埃尔温把点格棋游戏翻了个底朝天。

这个新游戏的意义在哪里?没有什么意义,就是很酷。“让思想家去思考,让梦想家去做梦,”爱德华·卢卡斯写道,“不必担心他们关注的对象是否时而有用,时而浅薄,因为正如智者安纳萨格拉斯 所说:‘一切都存在于一切之中。’”

这一哲学理念推动了数千年的数学探索,还将在未来持续下去。让思想家去思考吧,让梦想家去做梦吧,让学生在课堂上信手涂鸦吧。不要再试图划清现实与不切实际、有意义与无意义、无所事事与理想主义之间的无形边界了。它们都属于同一片广袤无垠的大陆、同一片我们刚刚开始探索的壮丽荒野。

变体及相关游戏

瑞典棋盘 :从已经画好的棋盘外缘开始。

② 在英文中,“board”(棋盘)与“bored”(无聊)谐音。——译者注

点和三角形: 其他游戏规则都保持不变,除了点的排布形状改成了等边三角形,玩家们需要争夺小等边三角形的所有权。在我看来,这个改动让游戏焕然一新(而且三角形也不难画)。如果你已经玩腻了点格棋的经典版本,那么在餐厅等上菜的时候,就非常适合来两局“点和三角形”。

纳扎雷诺: 点格棋的这个巧妙变体来自安德烈亚·安焦利诺(Andrea Angiolino)的著作《超有趣的纸笔游戏》( Super Sharp Pencil and Paper Games )。在这个新游戏中,只改变了2个规则:第一,在每个回合, 你都可以画一条任意长度的直线, 只要它不和现有的线重合(如此一来,你就可以用一条线完成并占领多个格子);第二,当玩家完成一个格子时,不会奖励该玩家接着再画一条线。

“点和三角形”游戏看起来与点格棋不大一样,外观上的差异掩盖了这2个游戏基本相同的内核。“纳扎雷诺”恰恰相反:在相似的外观下掩藏着与点格棋完全不同的游戏体验。

正方形珊瑚虫: 沃尔特·尤里斯(Walter Joris)在他的《100个纸笔策略游戏》( 100 Strategic Games for Pen and Paper )一书中提及了一些天马行空、带有点格棋影子的游戏。我最喜欢的是第90个:正方形珊瑚虫。玩这个游戏,需要2名玩家和2支不同颜色的笔。

(1)画一个9×9圆点阵列(初学者可以少画一些,资深玩家可以多画一些),然后两个玩家 轮流在上面放置正方形珊瑚虫 。正方形珊瑚虫就是有两条相邻的边延伸出来的正方形,像下面这样:

(2) 用属于你的颜色围起来的部分就是你的领地。 每只珊瑚虫会自动占据一个1×1正方形,但如果玩得好,你可以占据面积更大、形状更奇怪的区域。

(3) 线条不可以重叠。 否则,你就可以用一个刺状的触手来破坏对手的精巧构思了(同样,他也可以借此轻松地破坏你的构思)。

(4) 玩到无路可走 时,谁的圈地面积大,谁就是赢家。 qd6X+4YSKGLm9AAP5xvtaHXcQFQty8D4hN6k6xqmS1dvaKByjV358yam2+OKIrbl



抽芽游戏

具有“奇特的拓扑风味”的游戏

学校里的几何课教给我们一个枯燥乏味的道理:大小(或尺寸)是非常重要的。事实上,大小是物质的本质特征。角可以是锐角、直角或钝角,图形有长度、面积或体积,咸焦糖摩卡有中杯、大杯或超大杯……这些特征都可以归结为大小。对了,还有“几何”(geometry)这门学科的名字——“geo”是地球的意思,“metry”是测量的意思——就是衡量世界本身。

这种注重大小的哲学理念会冒犯到你吗?如果会,那你应该喜欢拓扑学。它的形状可以像橡胶一样伸缩,像橡皮泥一样挤压,像气球一样膨胀。事实上,它不是某种形状,而是一个变形怪。在这个像熔岩般流动的世界里,大小并不重要。事实上,“大小”甚至没有任何意义。拓扑学寻求的是更深层的真理。

没有什么比抽芽游戏能更形象地介绍这些真理。哪些点可以连接?会形成多少个区域?“里面”和“外面”的区别是什么?拿好你的帽子——或者它的拓扑等价物——享受一个任何孩子都能玩,但没有超级计算机能解决的游戏。

这个游戏怎么玩?

你需要准备什么? 2名(或更多)玩家、2支不同颜色的笔和1张纸。先在纸上画几个点。对于最初几轮游戏来说,3~4个点就足够了。

玩家的目标是什么? 抢占最后一步,让你的对手别无选择。

游戏的规则是怎样的呢?

(1)在每个回合中,玩家轮流用一条平滑的线 连接2个点(或将一个点与它自身相连) ,并在自己刚刚画的那条线上 标注一个新的点

(2)只有2个限制:① 连接线 不能相交叉;② 每个点最多可以发散出3条线。

(3)最终,你们会无路可走。 谁走了最后一步,谁就是赢家

游戏体验笔记

抽芽游戏的乐趣在于它的灵活性。不管你画的是短线或懒洋洋的曲线,还是迷宫般的螺旋。重要的是,你连接了哪些点。你甚至可以签上自己的名字。在我们的游戏测试中,6年级学生安吉拉发明了用抽芽游戏签名,尽管从技术上讲,这违反了“禁止交叉”规则,但它看起来实在太棒了,让人于心不忍。

这种灵活性抓住了拓扑学的精髓:看起来非常不同的东西,从功能上看,可能是相同的。

以单点游戏为例。第1个玩家必须将这个点和它自己连接起来。之后,第2个玩家必须连接图中的2个点。要实现这一点,似乎有2种不同的方式:从内部穿过,或者从外部绕过去。

等等,想象一下如果在球体表面玩这个游戏。在这种情况下,尽管“从内部穿过”和“从外部绕过去”看起来截然不同,但实际上什么都没有改变。从拓扑学的角度来看,这2种移动是相同的。第二个玩家并没有真正的自由选择权。

2个点的抽芽游戏是什么样的呢?从拓扑学的角度来看,玩家在开局只有两种选择:把2个点连起来,或者将其中一个点和自身相连。不管把另一个点留在“外面”还是“里面”,都无关紧要,因为在拓扑学中,这2种情况都一样。

这么说来,拓扑学家是不是会忽略所有的区别,将所有事物都视为一样的?在拓扑学中,“赢”等同于“输”吗?“好”只是“坏”的另一种表述吗?猫等同于鱼吗?如果是,我们是否应该在水族馆里放小猫砂盒?

最后一个问题由你这个宠物主人做决定。但说到抽芽游戏,不必担心,并不是所有的步骤都是一样的。事实上,在2个点的抽芽游戏的第二步,你已经面临6种不同的拓扑选择。所以自此,你便获得了选择的自由。

点格棋游戏呈现给我们的是刚性的直线几何,就像一座建在网格上的城市。相比之下,抽芽游戏是一款开放的、形式自由的游戏,就像一场混乱喧嚣的嘉年华狂欢。

这个游戏从何而来?

抽芽游戏诞生的确切时间和地点:1967年2月21日星期二下午,英国剑桥。

那天,抽芽游戏的“父母”——计算机科学家迈克·帕特森(Mike Paterson)和数学家约翰·康威,正在纸上涂鸦,试图设计一款新游戏。当时,迈克提出“添加1个新的点”的规则,约翰给游戏取了个名字,抽芽游戏就这样诞生了。 这对欣喜若狂的“父母”一致同意将功劳按迈克60%、约翰40%的比例分配,这种友好而精确的功劳分配比游戏的诞生更令人钦佩。

抽芽游戏很容易玩,但几乎不可能破解。丹尼斯·莫利森(DenisMollison)曾写了一篇长达47页的分析报告,介绍如何掌控6个点的抽芽游戏。直到1990年,贝尔实验室的一台计算机才破解11个点的抽芽游戏。到我写这本书时,抽芽游戏被破解的最高点数超过40个。不过2020年,康威在去世前对这一结果的合理性提出了质疑。“如果有人说他们发明了一种机器,可以写出能与莎士比亚的戏剧相提并论的作品,你会相信吗?”他问道,“实在太复杂了。”

这样盘根错节的复杂性有没有吓跑那些只想在抽芽游戏中寻求乐趣的玩家呢?完全没有。“当抽芽游戏问世后,似乎所有人都在玩它。”康威写道,“在咖啡馆或茶舍,人们围成一个个小圈,以滑稽的姿势围观抽芽的位置……秘书人员也未能幸免……有人甚至在最不可能的地方也发现了人们在玩这个游戏……就连我3岁和4岁的女儿也在玩,”他补充道,“不过我通常能打败她们。”

为什么这个游戏很重要?

因为在现代数学的所有分支中,拓扑学是①动态的;②奇异的;③实用的;④美丽的。

还有很多其他形容词可以描述它,下面让我逐一道来。

拓扑学是动态的。 拓扑学家在一个由可拉伸的织物、熔化的金属和旋转的软冰激凌组成的变形世界中遨游。无论他们走到哪里,都在寻找 不变量 的踪迹,即那些在经历了所有的剧变之后,以某种方式保持不变的特征和属性。

最著名的不变量是 欧拉示性数 。在抽芽游戏中,它可以归结为一个简单的等式(这个版本由埃里克·所罗门提供):点数+封闭区域数=线条数+独立部分数。

这个等式适用于所有可能出现的抽芽游戏场景,包括从游戏开始到结束,从最简单的到最复杂的环节。无论你是从2个点开始还是从200万个点开始, 点的数量加上封闭区域的数量总是等于连接点的线的数量加上独立部分的数量。

这就是典型的拓扑学:在千变万化中,我们找到了其强大的规律。

拓扑学是奇异的。 以下是约翰·康威给出的一个有趣结果。如果想让抽芽游戏的步数最少,那么游戏结束时必然呈以下形状之一:

正如经典著作《数学游戏的制胜之道》( Winning Ways for Your Mathematical Plays )中所解释的:“游戏最终呈现的将是一只(可能以某种方式被翻转过来)被大量虱子(其中一些可能会感染其他昆虫)感染的昆虫构造。”

那可能会是铺天盖地的虱子。正如康威所调侃的那样有一部分构造尤其“虱山虱海”。

拓扑学是实用的。 忽略虱子和蠼螋的花哨形状,拓扑学让我们对各种事物有了更深刻的见解,从多结的DNA到错综复杂的社交网络,更不用说宇宙学和量子场论了。

以拓扑学中的一个著名问题为例: 图同构。 如你所见,在抽芽游戏中,可能会出现2种看起来不同,但包含相同结构的部分。我们要如何分辨它们是真的不同,还是表面虽然不同,但本质相同呢?

当电气工程师比较电路原理图、计算机科学家编码视觉信息、化学家在结构数据库中查找化合物时,都会遇到同样的问题。事实上,这些清醒的科学家都在玩私人定制版的抽芽游戏。

拓扑学是美丽的。 许多人第一次接触拓扑是通过莫比乌斯环,也就是把一根纸条扭转180°后,再将两头粘起来变成一个纸带圈。

莫比乌斯环没有“内外”之分。如果你想给它像手镯一样上色,即蓝色的部分朝向手腕,红色的部分朝外,你是不会成功的。无论先涂哪种颜色,最终这种颜色都会覆盖环的整个表面。这只是它的特性之一。如果你把一条莫比乌斯环从中间剪开,会发生什么?如果把它剪成3段呢?

英国数学家大卫·理查森(David Richeson)在他的《欧拉的宝石》( Euler's Gem )一书中统计了拓扑学家获得菲尔兹奖(数学领域最著名的奖项之一)的次数。他写道:“在48名获奖者中,大约有 的数学家是因为他们在拓扑学方面所做的工作而得奖,而在与拓扑学密切相关的其他领域做出贡献的人甚至更多。”

如果说拓扑学的美丽来自简单性与复杂性的联姻,那么抽芽游戏一定是它们最受宠的孩子。

变体及相关游戏

杂草游戏: 这个游戏由弗拉基米尔·伊格内托维奇(Vladimir Ygnetovich)设计。在每个回合中,你不是在自己刚刚画的线上添加1个点,而是要选择添加0个、1个还是2个点。

点集游戏: 在沃尔特·尤里斯设计的这个变体游戏中,除了你可以通过占领区域获得分数,其他规则与抽芽游戏一样。如果你画线后创建了一个封闭区域,就用你的初始值或颜色标记它,此区域边界上的每个点都可以得1分,此后不得在该区域内再做任何操作。当最后无路可走时,得分最多的人获胜。

抱子甘蓝游戏: 从表面上看,抱子甘蓝游戏似乎和原版抽芽游戏一样完全是开放式且充满策略性的。但事实上,比起游戏,“抱子甘蓝”更像是狡猾的恶作剧。

这个游戏从几个“十”字开始,每个“十”字都有4个可以连接的“有空”末端。玩家轮流连接任意2个“有空”末端,然后在自己刚刚画的那条线上画一条短竖线,这样就会生成2个新的“有空”末端。注意,画的过程中不能和现有的线条交叉。画最后一条线的玩家为赢家。

恶作剧体现在哪里呢?就是你的玩法和策略对游戏结果不会产生任何影响。起始“十”字的数量为奇数时,先走的玩家获胜;起始“十”字的数量为偶数时,后走的玩家获胜。因此,你所有的运筹帷幄和深谋远虑,与转动着玩具方向盘,想象自己在控制汽车的情形没有什么不同。

这是如何做到的呢?来,注意看,在游戏过程中,可连的末端数是不变的。每走一步就会消耗2个末端,然后再用2个新的末端替代它们。区域的数量则恰恰相反,大多数时候每走一步都会增加一个新的区域——除一些特殊的走法外。在有 n 个“十”字的游戏中,将有( n -1)步是用于连接之前未连接过的“十”字,这( n -1)步都不会增加任何新区域。

当区域的数量赶上“有空”末端的数量时,游戏结束。这需要走(4 n -1)个增加区域的步数,加上( n -1)个不增加区域的步数,总共是(5 n -2)步。

如果你想用这个恶作剧整一下好朋友,可以提议一起玩2、4或6个“十”字的抱子甘蓝游戏,每次都大大方方地坚持让对方先走。当朋友感觉到不对劲并要求你先走时,偷偷地切换成3或5个“十”字的游戏。当然,开玩笑可以,不能用这个办法骗人哦。 qd6X+4YSKGLm9AAP5xvtaHXcQFQty8D4hN6k6xqmS1dvaKByjV358yam2+OKIrbl

点击中间区域
呼出菜单
上一章
目录
下一章
×