购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

内容简介

本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者阅读。

机器学习可以分成三大类别:监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近的方法和概率统计中的极大似然方法;非监督式学习使用了聚类和贝叶斯算法;强化学习使用了马尔可夫决策过程算法。

机器学习背后的数学内容来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学知识较多,但是最快捷的办法还是带着机器学习的具体问题来掌握背后的数学原理。因为线性代数和概率理论使用较多,本书在最后两章集中把重要的一些概率论和线性代数的内容加以介绍,如果有需要的同学可以参考。另外,学习任何知识,动手练习是加深理解的最好方法,所以本书的每一章都配备了习题供大家实践和练习。 5ECbUuxnCdL1fETU8apH+zxQwn21NerpSOjEv2g17Gg31/MzTHg472eY/WbnwWyc

点击中间区域
呼出菜单
上一章
目录
下一章
×