购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

5.1 转动惯量

本章首先简要回顾刚体定轴转动的运动方程(见图5-1)。

为了得到运动方程,首先计算圆柱体的动能。用 ω 表示圆柱体的角速度,用 ρ 表示圆柱体材料的质量密度。假设圆柱体是由 n (这里的 n 会非常大)个非常小的质元Δ m i 组成的,其中质元 i 的质量为

Δ m i = ρr i Δ θ Δ Δ r

如图5-2所示,每一个质元Δ m i 都以相同的角速度 ω 转动,因此Δ m i 的线速度为 v i = r i ω r i 是质元Δ m i 与转轴之间的距离。所以Δ m i 的动能 KE i 可以表示为

图5-1 定轴转动的圆柱体

图5-2 圆柱体被认为是由质元Δ m i 组成的

则总动能为

如果认为质元质量极小,则Δ m i →0,且 n →∞。此时,上式中的

可表达为积分形式

J =∫∫∫ 圆柱体 r 2 d m

我们将 J 称为转动惯量。通过 J 可以将圆柱体的动能表达为以下形式

取轴半径为0,则圆柱体的转动惯量(假设密度 ρ 为常数)为

式中, M 是圆柱体的总质量。 vS9pGd/nSghd960ICBcEhxFYP/z+XbhkwMYxm/CywXnvOx7vG88h9rf+dARt0X2P

点击中间区域
呼出菜单
上一章
目录
下一章
×