购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

*3.5.2 特殊情况
劳斯表的一行元素为0

这里我们考虑一种特殊情况,劳斯表的一行元素全部为0。当然这也意味着它的第一列元素有0,多项式 a s )是不稳定的。在这种情况下, a s )在j ω 轴上有根。正如前面所提到的,我们通常只对系统是否稳定感兴趣,所以这个结果没有很大的价值。然而,在第12章中,它是描述闭环系统根轨迹的工具之一。

例23 某行元素全为0 [12]

回想一下我们在例18中考虑的问题

a s )= s 3 + αs 2 + s +1

它的劳斯表为

它对 α >1是稳定的。当0< α <1时,它在右半平面内有两个根。

那么当 α =1呢?当 α 略小于1时,它在右半平面内有两个根,当 α 略大于1时,所有根都在左半平面上。我们猜想当 α =1时,有两个根在j ω 轴上。这确实是真的,但没有给出证据。现在我们解释如何找到 α =1时j ω 轴上的两个根的位置。当 α =1时,劳斯表变为

注意,现在 s 行只有0,我们到它上面一行,即 s 2 行。回想一下劳斯表是如何形成的, s 2 行的第一个元素是1,对应于 s 2 行。而 s 2 行的第二个元素也是1,对应于 s 0 行。我们用这两个系数形成辅助多项式,定义如下

1⋅ s 2 +1⋅ s 0 = s 2 +1

辅助多项式的根为

s =±j

它们也是 α =1时 a s )在j ω 轴上的两个根的位置。具体来说,当 α =1时有

a s )= s 3 + s 2 + s +1=( s +1)( s 2 +1)

明确地展示了辅助多项式的根也是 a s )的根。

例24 某行元素全为 0 [12]

回想例19,我们考虑下式的稳定性

a s )≜ s 3 +5 s 2 +2 s + K -8

劳斯表为

这表明当8< K <18时, a s )是稳定的。当 K >18时, a s )有两个根在右半平面。

K =18呢? K 略小于18时, a s )的所有根都在左半平面内,当 K 的值略大于18时,它有两个根在右半平面内。所以对于 K =18,我们认为在j ω 轴上有两个根。为了找到这两个根的位置,我们在劳斯表中令 K =18,得到

注意 s 行中只有0,我们到它上面一行,也就是 s 2 行。 s 2 行的第一个元素是5,对应于 s 2 行。而 s 2 行的第二个元素是10,对应于 s 0 行。我们用这两个系数形成辅助多项式,定义如下

5⋅ s 2 +10⋅ s 0 =5( s 2 +2)

辅助多项式的根为

它们也是 a s )两个根的位置,当 K =18时,它们在j ω 轴上。具体来说,当 K =18时有

a s )= s 3 +5 s 2 +2 s +10=( s 2 +2)( s +5)

这表明辅助多项式的根也是 a s )的根。

那么当 K =8呢?当 K =8时劳斯表为

K <8时有一个根在右半平面,当 K 略大于8时所有的根都在左半平面内。所以我们认为 K =8时有一个根在j ω 轴上。这很容易理解为

a s )≜ s 3 +5 s 2 +2 s + K -8 K =8| = s 3 +5 s 2 +2 s

这表明 a s )有一个根在 s =0处。

例25 某行元素全为0

回想一下我们在例20中考虑的问题:

a s )= s 3 +3 Ks 2 +( K +2) s +4

它的劳斯表为

使用这个表,它显示出当 K >0.528时 a s )是稳定的。当0< K <0.528时,可以看出 a s )在右半平面内有两个根。

那么当 K =0.528时呢?我们推断 a s )在j ω 轴上有两个根。这是因为当 K 略小于0.528时,多项式 a s )在右半平面内有两个根,当 K 略大于0.528时它的所有根都在左半平面内。我们认为当 K =0.528时, a s )有两个根在j ω 轴上。为了找到这些根,我们将劳斯表中的 K 设置为0.528,得到

注意到 s 行只有0。我们到它上面一行,即 s 2 行并形成如下定义的辅助多项式

3(0.528) s 2 +4=3(0.528)( s 2 +2.52)

辅助多项式的根为

s =±j1.6

这些也是当 K =0.528时 a s )在j ω 轴上的两个根的位置。事实上当 K =0.528时我们可以得到

明确地展示了辅助多项式的根也是 a s )的根。

例26 某行元素全为0

系统特征方程为

a s )= s 3 +2 s 2 + s +2

其劳斯表如下

s 行元素都为0。建立辅助方程

2 s 2 +2=2( s 2 +1)

它存在根

s =±j

由于辅助方程的根也是 a s )的根,因此±j是 a s )在j ω 轴上的根。事实上,

a s )= s 3 +2 s 2 + s +2=( s +2)( s 2 +1) m6JwP1napUSIz0Z0AaxgAFq8ARknZdu+e/9B7Y9MsaPrKN2R2YzaNCD4AwX/+JmU

点击中间区域
呼出菜单
上一章
目录
下一章
×