温度是人类生活、工农业生产等领域中的一个非常重要的基本物理参数。人类已经发明了各种温度传感器,如基于热电势变化的热电偶,基于体积变化的水银温度计,以及基于电阻变化的电阻温度计等已得到广泛的运用。相比这些传统的温度计,荧光配合物温度计具有抗电磁干扰,高压绝缘,精度高,重复利用性高,多环境适应性等优点。
2013年,吉林大学施展课题组用配合物Zn-TDPAT作为荧光温度探测器,在 164~276 K的范围内进行探测 [65] 。随着温度的升高,配合物的最高荧光峰(435 nm)峰强与温度成相应变化,尤其难得的是荧光峰强和温度成线性相关。因此,通过测试相应的荧光峰强度就能实现对温度的探测。
金属有机配合物在温度探测方面的工作近几年才开始起步,利用配合物荧光温度计虽然具有一些优势,但是因为荧光强度容易受到荧光材料的形貌,荧光材料的用量,激发光源,荧光探测仪器稳定性的干扰,从而导致温度测量精度的下降。为了解决这个问题,双金属的配合物实施的比率荧光温度计得到了发展。
2012年,浙江大学的崔元靖和钱国栋研究员采用 2,5-dimethoxy-1,4-benzenedicarboxylate(DMBDC)作为有机配体与Eu 3+ 和Tb 3+ 离子组合得到混合金属配合物Eu 0 .0069 Tb 0 .9931 DMBDC。他们通过Gd-DMBDC的 77 K下的磷光测试,计算出配体的最低激发三重态能级为 23306 cm -1 ,计算结果表明能够同时向Tb 3+ 和Eu 3+ 传递能量及能同时敏化这两个稀土离子。他们首先分别测试了Eu-DMBDC和Tb-DMBDC的荧光强度在 10~300 K范围内的变化,发现无论Eu 3+ 还是Tb 3+ 的配合物的荧光强度都随着温度升高而降低,他们分析这可能是因为非辐射跃迁耗能增加造成。在此基础上,他们测试了 10 K到 300 K范围内的荧光,发现随着温度的升高,Tb 3+ 的发光强度不断降低而Eu 3+ 的发光强度不断增强。跟单个的稀土配合物相比,混合稀土配合物除了有机配体向稀土传能之外,还存在着不同稀土离子之间的能量传递。文中更难得的是在 50~200 K的范围内Tb 3+ 的 5 D 4 → 7 F 5 (545 nm)和Eu 3+ 的 5 D 0 → 7 F 2 (613 nm)的荧光强度的比值 I Tb / I Eu 与温度的变化呈线性关系。因此,得到了一个能在 50~200 K范围内通过比率荧光对温度实行准确探测的温度计。和单一稀土配合物的荧光温度计相比,可以利用荧光强度的比值而实现自校准 [66] 。
2014年,杜少武课题组也报道了一例混合稀土的比率荧光温度计[Eu 0 .7 Tb 0 .32 (D-cam)(Himdc) 2 (H 2 O) 2 ],如Figure 1.28,在更宽的温度范围 100~450 K实现了温度和 I Tb / I Eu 的线性关系。自校准比率荧光温度计精确探测温度的范围得到了进一步的扩大 [67] 。
目前基于发光金属配合物的温度探测报道还比较少,研究工作也还处在初级阶段,尤其是量化探测的范围还有待进一步的提高和拓展。此外,现在的配合物荧光探测方面的研究还大多处于单一探测阶段,应该多发展合成新型多功能多用途的荧光探测材料,提高探测的灵敏度以及拓展探测领域。
[1]G.Cai,P.Yan,L.Zhang,et al.Metal-Organic Framework-Based Hierarchically Porous Materials:Synthesis and Applications[J].Chem.Rev.,2021,121(20):12278-12326.
[2]K.Choi,J.Park,and J.Kang.Nanocrystalline MOFs Embedded in the Crystals of Other MOFs and Their Multifunctional Performance for Molecular Encapsulation and Energy-Carrier Storage[J].Chem.Mater.,2015,27(14):5088-5093.
[3]G.Chakraborty,I.Park,R.Medishetty,et al.Two-Dimensional Metal-Organic Framework Materials:Synthesis,Structures,Properties and Applications[J].Chem.Rev.,2021,121(7):3751-3891.
[4]B.Gole,U.Sanyal,R.Banerjee,et al.High Loading of Pd Nanoparticles by Interior Functionalization of MOFs for Heterogeneous Catalysis[J].Inorg.Chem.,2016,55(5):2345-2354.
[5]Z.Xu,X.Wu,J.Liu,et al.Synthesis and Gas Sorption Properties of a Homochiral Metal-Organic Framework with Octahedral Cages[J].CrystEngComm,2015,17:6107-6109.
[6]H.Aiyappa,P.Pachfule,R.Banerjee,et al.Porous Carbons from Nonporous MOFs:Influence of Ligand Characteristics on Intrinsic Properties of End Carbon[J].Cryst.Growth Des.,2013,13(10):4195-4199.
[7]A.G.Jason,S.S.David.Prediction of Adsorption Properties of Cyclic Hydrocarbons in MOFs Using DFT-Derived Force Fields[J].J.Phys.Chem.C,2015,119(29):16920-16926.
[8]J.Liu,L.Chen,H.Cui,et al.Applications of Metal-Organic Frameworks in Heterogeneous Supramolecular Catalysis[J].Chem.Soc.Rev.,2014,43:6011-6061.
[9]F.S.G.Dorina.,E.S.R.Lauren,A.R.Mark,et al.Efficient Photoluminescence via Metal Ligand Alteration in a New MOFs Family[J].Chem.Mater.,2014,26(9):2943-2951.
[10]Y.Han,P.Qi,J.Zhou,et al.Metal" Organic Frameworks(MOFs)as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries[J].ACS Appl.Mater.Interfaces,2015,7(48):26608-26613.
[11]M.Y.Chow,Z.Y.Zhou,T.C.W.Mak.A Linear Polymeric Copper(Ⅱ)Complex Bridged Simultaneously by Azido,Nitrato,and Betaine Ligands.Crystal Structure of Catena-[Bis(.Mu.-(1,1)-Azido)Bis(.Mu.-Nitrato-O,O′)Bis′((.Mu.′Trimethylammonio)Acetato-O,O′)Dicopper(Ⅱ)],[Cu 2 (N 3 ) 2 (NO 3 ) 2 (Me 3 NCH 2 CO 2 ) 2 ] n [J].Inorg.Chem.,1992,31(23):4900-4902.
[12]G.Li,W.Liu,S.Yang,et al.Anion-Afforded Functions of Ionic Metal-Organic Frameworks:Ionochromism,Anion Conduction,and Catalysis[J].Inorg.Chem.,2022,61(2):902-910.
[13]T.Zhou, S.Liu, S.Wang, et al.Dual-Function Lanthanide-Organic Frameworks Based on a Zwitterionic Ligand as a Ratiometric Thermometer and a Selective Sensor for Nitroaromatic Explosives[J].Ind.Eng.Chem.Res.,2021,60(31):11760-11767.
[14]C.Zhang,H.Shi,Y.Yan,et al.AZwitterionic Ligand-Based Water-Stable Metal-Organic Framework Showing Photochromic and Cr(Ⅵ)Removal Properties[J].Dalton Trans.,2020,49(30):10613-10620.
[15]J.Yu,Y.Cui,C Wu,et al.Two-Photon Responsive Metal-Organic Framework[J].J.Am.Chem.Soc.,2015,137(12):4026-4029.
[16]X.Wang,X.Li,R.Yan,et al.Diverse Manganese(Ⅱ)Coordination Polymers Derived from Achiral/Chiral Imidazolium-Carboxylate Zwitterions and Azide:Structure and Magnetic Properties[J].Dalton Trans.,2013,42:10000-10010.
[17]G.Kong,C.Wu.Four Novel Coordination Polymers Based on a Flexible Zwitterionic Ligand and Their Framework Dependent Luminescent Properties[J].Cryst.Growth Des.,2010,10(10):4590-4595.
[18]X.Li,X.Guo,X.Wen,et al.Two Novel 2D Cadmium(Ⅱ)MOFs Based on Flexible Bis(Imidazolyl)and Zwitterionic Dicarboxylate Ligands[J].CrystEngComm,2012,14:1412-1418.
[19]P.Suresh,C.N.Babu,N.Sampath,et al.Photoluminescent Calcium Azolium Carboxylates with Diversified Calcium Coordination Geometry and Thermal Stability[J].Dalton Trans.,2015,44:7338-7346.
[20]Q.Yao,Z.Ju,X.Jin,et al.Novel Polythreaded Coordination Polymer:From an Armed-Polyrotaxane Sheet to a 3D Polypseudorotaxane Array,Photo-and Thermochromic Behaviors[J].Inorg.Chem.,2009,48(4):1266-1268.
[21]J.Sun,Q.Yao,Y.Tian,et al.Borromean-Entanglement-Driven Assembly of Porous Molecular Architectures with Anion-Modified Pore Space[J].Chem.Eur.J.,2012,18:1924-1931.
[22]Q.Yao,L.Pan,X.Jin,et al.Bipyridinium Array-Type Porous Polymer Displaying Hydrogen Storage,Charge-Transfer-Type Guest Inclusion,and Tunable Magnetic Properties[J].Chem.Eur.J.,2009,15:11890-11897.
[23]G.Kong,C.Wu.A Self-Assembled Supramolecular Solid For Catalytic Application[J].Inorg.Chem.Commun.,2009,12(8):731-734.
[24]G.Kong,X.Xu,C.Zou,et al.Two Metal-Organic Frameworks Based on a Double Azolium Derivative:Post-Modification and Catalytic Activity[J].Chem.Commun.,2011,47(39):11005-11007.
[25]A.Wu,Y.Li,F.Zheng,et al.Different Molecular Frameworks of Zinc(Ⅱ)and Cadmium(Ⅱ)Coordination Polymers Constructed by Flexible Double Betaine Ligands[J].Crystal Growth&Design,2006,6(2):444-450.
[26]J.Zhang,Y.Xue,J.Bai,et al.An Unprecedented(3,7)-Connected Microporous Solvatochromic Coordination Polymer Built on a Semirigid Tripod Pyridinium-4-Olate Ligand[J].CrystEngComm,2011,13:6010-6012.
[27]Y.Ma,J.Zhang,et al.Antiferro-and Ferromagnetic Interactions in Mn(Ⅱ),Co(Ⅱ),and Ni(Ⅱ)Compounds with Mixed Azide-Carboxylate Bridges[J].Inorg.Chem.,2009,48(13):6142-6151.
[28]J.Zhang,K.Wang,et al.Magnetic Coupling and Slow Relaxation of Magnetization in Chain-Based Mn Ⅱ ,Co Ⅱ ,and Ni Ⅱ Coordination Frameworks[J].Inorg.Chem.,2014,53(23):9306-9314.
[29]Q.Yang,M.Pan,et al.Linear Dependence of Photoluminescence in Mixed Ln-MOFs for Color Tunability and Barcode Application[J].Inorg.Chem.,2015,54(12):5707-5716.
[30]Q.Yang,M.Pan,et al.Photoluminescent 3D Lanthanide MOFs with a Rare(10,3)-D Net Based on a New Tripodal Organic Linker[J].CrystEngComm,2014,16(28):6469-6475.
[31]Q.Yang,K.Li,et al.A Simple Topological Identification Method for Highly(3,12)-Connected 3D MOFs Showing Anion Exchange and Luminescent Properties[J].Chem.Commun.,2011,47(14):4234-4236.
[32]Q.Yang,K.Wu,et al.Pure White-Light and Yellow-to-Blue Emission Tuning in Single Crystals of Dy(Ⅲ)Metal" Organic Frameworks[J].Chem.Commun.,2014,50(57):7702-7704.
[33]J.Sun,L.Cai,et al.Reversible Luminescence Switch in a Photochromic Metal" Organic Framework[J].Chem.Commun.,2011,47(24):6870-6872.
[34]R.Wen,S.Han,G.Ren,et al.AFlexible Zwitterion Ligand Based Lanthanide MetalOrganic Framework for Luminescence Sensing of Metal Ions and Small Molecules[J].Dalton Trans.,2015,44:10914-10917.
[35]P.P.Bag,X.Wang,R.Cao.Microwave-Assisted Large Scale Synthesis of Lanthanide Metal-Organic Frameworks(Ln-MOFs),Having a Preferred Conformation and Photoluminescence Properties[J].Dalton Trans.,2015,44:11954-11962.
[36]X.Jin,J.Sun,et al.2D Flexible Metal-Organic Frameworks with[Cd 2 (μ 2 -X) 2 ](X=Cl or Br)Units Exhibiting Selective Fluorescence Sensing for Small Molecules[J].Chem.Commun.,2011,47(9):2667-2669.
[37]H.Li,H.Li,L.Li,et al.Syntheses,Structures,and Photoluminescent Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Aromatic Polycarboxylate Ligand[J].Cryst.Growth Des.,2015,15:4331-4340.
[38]M.Higuchi,D.Tanaka,et al,Porous Coordination Polymer with Pyridinium Cationic Surface,[Zn 2 (tpa) 2 (cpb)][J].J.Am.Chem.Soc.,2009,131:10336-10337.
[39]J.Sun,M.Ji,et al.A Charge-Polarized Porous Metal-Organic Framework for Gas Chromatographic Separation of Alcohols From Water[J].Chem.Commun.,2013,49(16):1624-1626.
[40]S.Yang,S.Chen,S.Liu,et al.Platforms Formed from a Three-Dimensional CuBased Zwitterionic Metal-Organic Framework and Probess-DNA:Selective Fluorescent Biosensors for Human Immunodeficiency Virus 1 ds-DNA and Sudan Virus RNA Sequences[J].Anal.Chem.,2015,87:12206-12214.
[41]L.Qin,L.Lin,Z.Fang,et al.A Water-Stable Metal-Organic Framework of a Zwitterionic Carboxylate with Dysprosium:A Sensing Platform for Ebolavirus RNA Sequences[J].Chem.Commun.,2016,52:132-135.
[42]H.Zhao,S.Yang,N.Ding,et al.A Zwitterionic 1D/2D Polymer Co-Crystal and Its Polymorphic Sub-Components:a Highly Selective Sensing Platform for HIV ds-DNA Sequences[J].Dalton Trans.,2016,45:5092-5100.
[43]D.Aulakh,J.R.Varghese,M.Wriedt.A New Design Strategy to Access Zwitterionic Metal-Organic Frameworks from Anionic Viologen Derivates[J].Inorg.Chem.,2015,54(4):1756-1764.
[44]J.Chen,H.Zhao,H.Li,et al.Benttritopic Carboxylates for Coordination Networks:Clues to the Origin of Self-Penetration[J].CrystEngComm,2014,16:7722-7730.
[45]M.Higuchi,K.Nakamura,S.Horike,et al.Design of Flexible Lewis Acidic Sites in Porous Coordination Polymers by Using the Viologen Moiety[J].Angew.Chem.Int.Ed.,2012,51:8369-8372.
[46]X.Hu,C.Qin,L.Zhao,et al.Assembly of Zn-MetalOrganic Frameworks Based on a N-Rich Ligand:Selective Sorption for CO 2 and Luminescence Sensing of Nitro Explosives[J].RSC Adv.,2015,5:49606-49613.
[47]Y.Peng,G.Li,J.Hua,et al.Syntheses,Topological Structures and Properties of Six Metal-Organic Frameworks Constructed from a Flexible Tetracarboxylate Ligand[J].CrystEngComm,2015,17:3162-3170.
[48]L.Yang, Y.Zhang, R.Lv, et al.Serrated Single-Wall Metal-Organic Nanotubes(SWMONTs)for Benzene Adsorption[J].CrystEngComm,2015,17:5625-5628.
[49]Y.Zhou,H.Chen,B.Yan.An Eu 3+ Post-Functionalized Nanosized Metal-Organic Framework for Cation Exchange-Based Fe 3+ -Sensing in an Aqueous Environment[J].J.Mater.Chem.A,2014,2:13691-13697.
[50]Y.Han,C.Tian,S.Du.An Unusual Chiral 3D Inorganic Connectivity Featuring a{Pb 18 }Wheel:Rapid and Highly Selective and Sensitive Sensing of Co(Ⅱ)[J].Dalton Trans.,2014,43:11461-11464.
[51]Y.Li,J.Li,L.Wang,et al.Microporous Metal-Organic Frameworks with Open Metal Sites as Sorbents for Selective Gas Adsorption and Fluorescence Sensors for Metal Ions[J].J.Mater.Chem.A,2013,1:495-499.
[52]W.Yang,Z.Bai,W.Shi,et al.MOF-76:From a Luminescent Probe to Highly Efficient U Ⅵ Sorption Material[J].Chem.Commun.,2013,49:10415-10417.
[53]L.Zhang,Y.Jian,J.Wang,et al.Post-Modification of a MOF Through a FluorescentLabeling Technology for the Selective Sensing and Adsorption of Ag + in Aqueous Solution[J].Dalton Trans.,2012,41:10153-10155.
[54]J.Hao and B.Yan.A Water-Stable Lanthanide-Functionalized MOF as a Highly Selective and Sensitive Fluorescent Probe for Cd 2+ [J].Chem.Commun.,2015,51:7737-7740.
[55]Y.Wu,G.Yang,Y.Zhao,et al.Three New Solvent-Directed Cd(Ⅱ)-Based MOFs with Unique Luminescent Properties and Highly Selective Sensors for Cu 2+ Cations and Nitrobenzene[J].Dalton Trans.,2015,44:3271-3277.
[56]L.Zhang,Y.Jian,J.Wang,et al.Post-Modification of a MOF Through a FluorescentLabeling Technology for the Selective Sensing and Adsorption of Ag + in Aqueous Solution[J].Dalton Trans.,2012,41:10153-10155.
[57]H.Ren,C.Han,M.Qu,et al.Luminescent Group 12 Metal Tetracarboxylate Networks as Probe for Metal Ions[J].RSC Adv.,2014,4:49090-49097.
[58]X.Chen, S.He, F.Chen, et al.Synthesis, Characterization, and Luminescence Modulation of a Rare Barium-Tetracarboxylate Framework with I 2 O 1 Connectivity[J].CrystEngComm,2014,16:8706-8709.
[59]Y.Han,C.Tian,S.Du.An Unusual Chiral 3D Inorganic Connectivity Featuring a{Pb 18 }Wheel:Rapid and Highly Selective and Sensitive Sensing of Co(Ⅱ)[J].Dalton Trans.,2014,43:11461-11464.
[60]Z.Fu,D.Song,Y.Zeng,et al.A Layered Zinc Phosphate Decorated with Organic Fluorophores for Selective Luminescent Sensing of Metal Cations[J].Dalton Trans.,2012,41:10910-10912.
[61]B.L.Chen,L.B.Wang,F.Zapata,et al.A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions[J].Am.Chem.Soc.,2008,130(21):6718-6719.
[62]Y.Y.Xu,X.X.Wu,Y.Y.Wang,et al.Hydrothermal Syntheses of a Series of Cluster-Based Micro-Porous Luminescent Cadmium(Ⅱ)Metal-Organic Frameworks with 4-AminoBenzene-1,2,4-Triazole:Topological Diversity,Gas Absorption and Photo-Luminescent Characterization[J].RSC Adv.,2014,4:25172-25182.
[63]X.Zhou,L.Li,H.Li,et al.A flexibleEu(Ⅲ)-Based Metal-Organic Framework:Turn-off Luminescent Sensor for the Detection of Fe(Ⅲ)and Picric Acid[J].Dalton Trans.,2013,42:12403-12409.
[64]H.Wang,S.Jiang,Q.Lu,et al.Apillar-Layer MOF for Detection of Small Molecule Acetone and Metal Ions in Dilute Solution[J].RSC Adv.,2015,5:48881-48884.
[65]G.Liu,Y.Qin,L.Jing,et al.Two Novel MOF-74 Analogs Exhibiting Unique Luminescent Selectivity[J].Chem.Commun.,2013,49:1699-1701.
[66]D.Ma,B.Li,X.Zhou,Q.Zhou,et al.A Dual Functional MOF as a Luminescent Sensor for Quantitatively Detecting the Concentration of Nitrobenzene and Temperature[J].Chem.Commun.,2013,49:8964-8966.
[67]Y.Cui, H.Xu, Y.Yue, et al.A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer[J].J.Am.Chem.Soc.,2012,134:3979-3982.
[68]Y.Han,C.Tian,Q.Li,et al.Highly Chemical and Thermally Stable Luminescent Eu x Tb 1- x MOF Materials for Broad-Range pH and Temperature Sensors[J].J.Mater.Chem.C,2014,2:8065-8070.