事实证明:循序逐增是数学的组合、排列中客观存在的基本原理。
1.1 循序逐增是组合的基本原理
例证1 的组合过程
图1-1是反映 组合过程的一个图表。从该图表看出,当组合元素仅有“1”1个元素时,不能组合为2个元素的组合;当组合元素增加“2”这个元素后,便产生了“12”这个组合;当组合元素增加“3”这个元素后,便产生了“3”与“1”、“2”的组合,即增加了“13”、“23”2个组合,使之为3个组合;当组合元素增加“4”这个元素后,便产生了“4”与“1”、“2”、“3”的组合,即增加了“14”、“24”、“34”3个组合,使之为6个组合;当组合元素增加“5”这个元素后,便产生了“5”与“1”、“2”、“3”、“4”的组合,即增加了“15”、“25”、“35”、“45”4个组合,使之为10个组合;当组合元素增加“6”这个元素后,便产生了“6”与“1”、“2”、“3”、“4”、“5”的组合,即增加了“16、26、36、46、56”5个组合,使之为15个组合。可见, 的组合过程是循序逐增的过程。
图1-1 ( 组合过程反映图表)
例证2 的组合过程
图1-2 ( 组合过程反映图表)
图1-2是反映 组合过程的一个图表。从该图表看出,当组合元素仅有“1”1个元素和“1”、“2”2个元素时,不能组合为3个元素的组合;当组合元素增至“1”、“2”、“3”3个元素后,便产生了“123”这个组合;此起,当组合元素增加“4”这个元素后,便产生了“4”与“12”、“13”、“23”的组合,即增加了“124”、“134”、“234”3个组合,使之为4个组合;当组合元素增加“5”这个元素后,便产生了“5”与“12”、“13”、“14”、“23”、“24”、“34”的组合,即增加了“125”、“135”、“145”、“235”、“245”、“345”6个组合,使之为10个组合;当组合元素增加“6”这个元素后,便产生了“6”与“12”、“13”、“14”、“15”、“23”、“24”、“25”、“34”、“35”、“45”的组合,即增加了“126、136、146、156、236、246、256、346、356、456”10个组合,使之为20个组合。可见, 的组合过程是循序逐增的过程。
例证3 的组合过程
图1-3 ( 组合过程反映图表)
图1-3是反映 组合过程的一个图表。从该图表看出,当组合元素为“1、2、3”3个元素前,不能组合为4个元素的组合;当组合元素增至“1”、“2”、“3”、“4”4个元素时,便产生了“1234”这个组合;此起,当组合元素增加“5”这个元素后,便产生了“5”与“123”、“124”、“134”、“234”的组合,即增加了“1235”、“1245”、“1345”、“2345”4个组合,使之为5个组合;当组合元素增加“6”这个元素后,便产生了“6”与“123”、“124”、“125”、“134”、“135”、“145”、“234”、“235”、“245”、“345”的组合,即增加了“1236”、“1246”、“1256”、“1346”、“1356”、“1456”、“2346”、“2356”、“2456”、“3456”10个组合,使之为15个组合。可见, 的组合过程是循序逐增的过程。
现将例证2图1-2与例证1图1-1、例证3图1-3与例证2图1-2作比对,可发现,前后组合在组合元素上存在循序逐增现象。
从例证2图1-2与例证1图1-1的比对中看出,图1-2中 的各组3个元素的组合,是在图1-1 的各组2个元素的组合基础上增添1个元素后所形成的组合: 的“123”组合,是在 的“12”组合基础上增添“3”这个元素后形成的组合; 的4组3个元素的组合,是在 的3组2个元素的组合基础上增添“4”这个元素后形成的组合; 的10组3个元素的组合,是在 的6组2个元素的组合基础上增添“5”这个元素后形成的组合; 的20组3个元素的组合,是在 的10组2个元素的组合基础上增添“6”这个元素后形成的组合;总之,图1-2中 的各组3个元素的组合,是在图1-1 的各组2个元素的组合基础上增添1个元素后所形成的组合。这个过程,不仅仅是组合元素的增添,而且组合的组数也随之增加。可见, 的3个元素的组合与 的2个元素的组合之间存在循序逐增的关系。
再从例证3图1-3与例证2图1-2的比对中也可看出,图1-3中 的各组4个元素的组合,均是在图1-2 的各组3个元素的组合基础上增添1个元素后形成的组合。这不仅仅是组合元素的增添,而且组合的组数也随之增加。从中证明, 的4个元素的组合与 的3个元素的组合之间存在循序逐增的关系。
综例证1、例证2、例证3的证明,可得结论, 的组合过程是循序逐增的过程,这个循序逐增的过程,不仅体现在 n 的量上,在 m 不变的情况下,组合的组数随着 n 的增加而增加,而且也体现在 m 的量上,在 n > m 的前提下, 与 之间也存在循序逐增的关系。可见,循序逐增是 组合的基本原理。
1.2 循序逐增也是数学的排列的基本原理
例证1 的排列过程
图1-4是反映 排列过程的图表。从该图表看出,当排列元素仅有“1”1个元素时,不能形成2个元素的排列;当排列元素增至“1、2”2个元素时,便产生了“12”、“21”这2个排列,排列数为1×2=2;当排列元素增加“3”这个元素后,便产生了“3”与“1”、“2”的排列,即增加了“13”、“31”、“23”、“32”4个排列,使之为6个排列,排列数为2×3=6;当排列元素增加“4”这个元素后,便产生了“4”与“1”、“2”、“3”的排列,即增加了“14”、“41”、“24”、“42”、“34”、“43”6个排列,使之为12个排列,排列数为3×4=12;当排列元素增加“5”这个元素后,便产生了“5”与“1”、“2”、“3”、“4”的排列,即增加了“15”、“51”、“25”、“52”、“35”、“53”、“45”、“54”8个排列,使之为20个排列,排列数为4×5=20。可见, 的排列过程是循序逐增的过程。
图1-4 ( 排列过程反映图表)
图1-5 ( 排列过程反映图表)
例证2 的排列过程
图1-5是反映 排列过程的图表。从该图表看出,当排列元素仅有“1”1个元素和“1、2”2个元素时,不能形成3个元素的排列;当排列元素增至“1、2、3”3个元素时,便产生了“123”、“231”、“312”、“213”、“132”、“321”这6个排列,排列数为1×2×3=6;当排列元素增加“4”这个元素后,便产生了有“4”这个元素的18组排列(详见图1-5),使排列组数增至24,排列数为2×3×4=24;当排列元素增加“5”这个元素后,便产生了有“5”这个元素的36组排列,使排列组数增至60,排列数为3×4×5=60。可见, 的排列过程是“循序逐增”的过程,排列数随着 n 的量增加而增加。
现将例证2图1-5 的排列与例证1图1-4 的排列进行比对,可看出,图1-5 的各组3个元素的排列,均是在图 的各组2个元素的排列基础上增添1个元素后形成的排列:图1-5的 的6组3个元素的排列,是在图1-4的 的2组2个元素排列基础上增添“3”这个元素后形成的排列;图1-5的 的24组3个元素的排列,是在图1-4的 的6组2个元素排列基础上增添“4”这个元素后形成的排列;图1-5的 的60组3个元素的排列,是在图1-4的 的12组2个元素排列基础上增添“5”这个元素后形成的排列。可见, 与 ,在排列上, 的3个元素的排列与 的2个元素的排列之间存在循序逐增的关系。这不仅仅是排列元素的逐增,而且其排列组数也随之逐增。
图1-6 ( 的三角矩阵)
综例证1、例证2的证明,可得结论,数学的排列过程是循序逐增的过程,循序逐增是 排列的基本原理。