购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

§ 3.5 奇异三角形与黄金数

美国著名数学家、数学教育家乔治.波利亚(GeorgePolya,1887-1985)曾提出这样一个饶有趣味的几何问题:如果将三角形的三个角与三条边称为三角形的六个基本元素,那么能否找到一对不全等的三角形,使得它们有五个基本元素对应相等?

回答是肯定的.如△ ABC 和△ A′B′C′ ,若三边分别为8,12,18和12,18,27,因为 ,所以△ ABC ∽△ A′B′C′ ,这两个三角形有三个角和两条边对应相等,而这两个三角形不全等.

如果把满足上述条件的两个三角形叫做奇异三角形,更一般地,有下面的结论:

对于给定的正数 a ,以 a ka k 2 a ka k 2 a k 3 a ω k <1或1< k )为边的两个三角形就是奇异三角形.特别地,当 k k 时,为奇异直角三角形. hwUcEied3ZXE5vAYS3sw0iEBBW8AYyusjxBxVYwPpjFZCtSjha+4ZmO5hDdXfk+a

点击中间区域
呼出菜单
上一章
目录
下一章
×