购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

第1章
有理数

题 1 现有四个有理数 3,4,-6,10.将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果等于 24,其三种本质不同的运算式如下:

(1)______(2)______(3)______

另有四个数 3,-5,7,-13,可通过运算式(4)_________________使其结果等于 24.

类型: 结论开放型

建议: 1.此题是生活中常见的游戏,容易引发学生的兴趣.加入负数后,又正好加强了学生对运算符号的训练.

2.在讲完有理数加、减、乘、除运算后应用此题,建议可采取竞赛形式,调动学生积极性.

参考答案: 答案不唯一.

例如:(1)3 × (-6 + 4 + 10) (2)4 -[10 × (-6)÷ 3]

(3)3 × (10 -4)-(-6) (4)[-13 × (-5)+ 7]÷ 3

题 2 在 1,2,…,2002 前面任意添上正号和负号,求其非负代数和的最小值.

类型: 策略开放型

建议: 1.此题不可能一一尝试再做解答,应从奇数、偶数的性质入手,思维力度大是本题的特点;

2.此题可用于本章复习提高使用.

参考答案:

因a + b与a - b的奇偶性相同,故所求代数和的奇偶性与

的奇偶性相同,即为奇数.因此所求非负代数和不会小于 1.

又因

(-1 + 2)+ (3 -4 -5 + 6)+ (7 -8 -9 + 10)+ (11 -12 -13 + 14)+ …+ (1999 -2000 -2001 + 2002)= 1,

所以所求非负代数和的最小值为 1.

题3 ,则()

A. a < b < c B. c < b < a C. c < a < b D. b < a < c

类型: 策略开放型

建议: 1.本题方法巧妙,思维力度强.

2.可作为本章讲完后复习提高使用.

参考答案:

由于

所以

即a + 1 > b + 1 > c + 1,

因此有a > b > c.故选B.

题 4 如果a 2003 + b 2003 = 0,那么().

A. (a + b) 2003 = 0 B. (a - b) 2003 = 0

C. (a × b) 2003 = 0 D. (| a | + | b | ) 2003 = 0

类型: 策略开放型

建议: 1.本题综合应用了有理数一章中负数的奇次方,互为相反数的两个数和为 0,零指数幂等概念,考查对基本概念的理解应用.

2.可作为本章讲完后的提高使用.

参考答案:

由a 2003 + b 2003 = 0 得a 2003 = - b 2003 = (- b) 2003

又因为 2003 是奇数,

所以a = - b,即a + b = 0,

于是有(a + b) 2003 = 0.故选A.

题 5 有如下三个结论:

甲:a、b、c中至少有两个互为相反数,则a + b + c = 0.

乙:a、b、c中至少有两个互为相反数,则( a + b) 2 + ( b + c) 2 + ( c - a) 2 = 0.

丙:a、b、c中至少有两个互为相反数,则(a + b)(b + c)(c + a) = 0.

其中正确结论的个数为().

A. 0 B. 1 C. 2 D. 3

类型: 结论开放型

建议: 讲完相反数概念后提高使用.

参考答案:

比如令a = 5,b = -5,c = 3.

5,-5,3 中满足“至少有两个互为相反数”,但 5 + (-5)+ 3 = 3≠0,可知甲不真;

[5 + (-5)] 2 + (-5 + 3) 2 + (3 -5) 2 = 8≠0,可知乙不真;

a、b、c中至少有两个互为相反数,比如a、b互为相反数,即a + b = 0,则有(a + b)(b + c)(c + a) = 0,可知丙真.

故选B.

题 6 方程| x -2 | + | x + 3 | = 7 的解的个数是( )

A. 1 B. 2 C. 3 D. 4

类型: 策略开放型

建议: 1.本题的亮点在于运用数形结合的思想解决问题.

2.讲完绝对值概念后提高使用.

参考答案: 由绝对值的几何意义知,到点A(2)和点B( -3)的距离之和等于 7 的点有两个,即点C( -4)和点D(3),所以原方程的解为x = -4 或x = 3,故选B.

题 7 定义新运算:对于任何有理数a、b,都有 ,等号的右边是通常的乘法、除法和加法.

(1)求 的值.

(2)在数轴上表示出 .

(3)当 运算次数不断增加时, 的最小值是什么?说明理由.

类型: 综合开放型

建议: 1.在有理数的认识知识点的学习中使用,作为认识有理数后的综合能力提升.

2.该题目用来培养学生适应新运算的能力,巩固有理数运算和数轴知识,同时培养学生归纳、猜想和抽象能力,同时为学习极限打下基础.

参考答案:

(1) .

(2) .

数轴上表示如下

(3) ,….

当运算的次数增加时,结果中的分数部分趋向于零,结果最小为 2. krPBH8MBiM+hCesJw08hHndMSAdoL2cRHN8Zvjp7dEYTIvVT0pVtLkq9s3ovEkZ2

点击中间区域
呼出菜单
上一章
目录
下一章
×