购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

判别二次系统有界分界线环的例子

设二次系统

x =- y δx k 2 mxy ny y x (1 + ax by ),

0 (0,0)外围存在一个极限环,它随 δ 按适当方向单调变化而扩大,如果它最后变成了有限分界线环,那么如何判别此分界线环的类型.对于一般的二次系统,这是一个极困难的问题.但是要举出可以判别的二次系统的例子却是做得到的.下面是几个可以进行这种判别的例子.

1 从文[1]可推知系统

有以下结论:

(1)系统 原点外围的极限环当 δ 1 单调减少时,必扩大而变成如图 1所示的含一个鞍点和一个鞍结点的异宿轨线.

(2)系统 原点外围的极限环当 δ 1 单调减少时,必扩大而变成如图 2所示的含一个鞍点的异宿轨线.

(3)系统 原点外围的极限环当 δ 1 单调减少时,必扩大而变成如图 3所示的含两个鞍点的异宿轨线.

图1

图2

图3

2 从文[2]可推知系统

有以下结论:

(1)系统 原点外围的极限环当 δ 1 单调减少时,必扩大而变成如图 4所示的含一个鞍点和一个鞍结点的 无返回映射分界线环.

(2)系统 原点外围的极限环当 δ 1 单调减少时,必扩大而变成如图5 所示的只含一个鞍点的同宿轨线.

图4

图5

图6

(3)系统 原点外围的极限环当 δ 1 单调减少时,必扩大而变成如图6 所示的只含一个鞍点的无返回映射分界线环.

3 从文[3]可推知系统

有以下结论:

(1)系统 原点外围的极限环当 δ 1 单调增大时,必扩大而变成如图 7所示的含一个鞍点的无返回映射分界线环.

(2)系统 原点外围的极限环当 δ 1 单调增大时,必扩大而变成如图8 所示的只含一个鞍结点的同宿轨线.

(3)系统 原点外围的极限环当 δ 1 单调增大时,必扩大而变成如图 9所示的只含一个鞍点的同宿轨线.

以上三个例子的证明是类似的,所以只证明例 1.

证明

(1)由文[1]可知系统

x = 2 xy + 2( x 2 x ), y =-( y 2 -2 x -1)+ k 2 x 2 x -1)+ xy ,存在弓形分界线环,当 k 2 时,分界线环上奇点(0,1)是初等鞍点,(0,-1)是鞍结点.对此系统作变换 x′ = 10 x -2 y + 2, y′ y .仍记 x′ y′ 为x,y得系统 ,其相图如图 1 所示,显然结论(1)成立.

图7

图8

(2)系统 的全局相图如图 10 所示.这说明系统 δ 1 减少过程中,尚未减到零以前,原点外围极限环已变成过一个鞍点的分界线环了,如图 2 所示.故结论(2)也成立.

图9

(3)系统 的全局相图如图 11 所示,原点外围极限环当 δ 1 减少到零时尚未消除,当 δ 1 从零继续减少时,鞍结点B分裂成一个鞍点B和一个结点C,当 δ 1 减少到某值时,鞍点A和B的分界线必将重和,相图变成图 3.故结论(3)成立.证毕.

图10

图11

参考文献

[1]沈伯骞.二次系统存在三次曲线弓形分界线环的充要条件.纯粹数学与应用数学,1990,6(2):94-96.

[2]沈伯骞.二次系统的三次曲线极限线环和分界线环的存在性问题.数学年刊,1991,12(3):382-389.

[3]沈伯骞.二次系统的椭圆分界线环.应用数学学报,1992,15(2):174-183.

Annals of Differential Equations

1994,9(2):163-172 +m3tcnLrVgx3dw9rloHdj1xTDrWbd7lyNTIKrMQamxKHMSyz3BVkaIpA7i1eNEFk

点击中间区域
呼出菜单
上一章
目录
下一章
×