购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

第5章
短路电流计算及元器件选择与校验

为保证数据中心供配电系统可靠运行,在数据中心供配电设计中,对于电气设备,尤其是系统中的保护器件(如断路器、负荷开关等),不仅要考虑它们在正常运行状态下的情况,还要考虑系统发生极端情况下可能对其产生的影响。数据中心供配电系统所发生的最极端的情况是系统某处发生三相短路故障,也是对数据中心供配电系统危害最为严重的一种。本章根据数据中心供配电系统的特点,主要介绍数据中心供配电系统的短路电流计算及主要元器件的选择与校验。 n34jUMEjVFgBenMviXSU5WYdFTo18ti2vWhaPRRpCICWQuhNvH7pQmzIPPhuB+jV



5.1 短路电流及计算

5.1.1 短路的原因及危害

数据中心短路的类型主要有以下几种:三相短路、两相短路、两相接地短路及单相接地短路。三相短路时,由于被短路的三相阻抗相等,因此三相短路电流和电压仍是对称的,又称为对称短路。其余的几种短路,因系统的三相对称结构遭到破坏,供电网络中的三相电压和电流不再对称,故又称为不对称短路。

对于上述四种短路类型及短路电流如图5-1所示。

图5-1 短路类型及短路电流

数据中心的短路故障类型中以单相接地短路所占的比例最高。

数据中心供配电系统发生短路的主要原因如下:

1)电气设备载流部分的绝缘损坏。

2)维护人员违反安全规程的误操作。

3)电器设备因设计、安装及维护不良所导致的设备缺陷引发的短路。

短路发生时,强大的短路电流将对电气设备和供配电系统的正常运行产生很大的危害。主要体现在以下几个方面:

1)短路电流的热效应会使设备发热急剧增加,可能导致设备过热而损坏甚至烧毁。

2)短路电流将在电气设备的导体间产生很大的电动力,可引起设备机械变形、扭曲甚至损坏。

3)不对称短路产生的不平衡磁场会对通信系统及弱电设备产生电磁干扰,影响其正常工作,甚至危及设备和人身安全。

5.1.2 短路计算的目的

为减少短路故障对数据中心供配电系统的危害,将发生短路的部分与供配电系统的其他部分迅速隔离开,使未发生故障的部分保持正常运行状态,这都离不开对短路电流的计算。短路电流的计算有以下目的:

1)为选择和校验各种电气设备的机械(动)稳定、热稳定及分断能力提供依据,如:断路器、电流互感器、电压互感器等。

2)合理配置系统中各种继电保护和自动装置,并正确整定其参数,提供可靠的设计和整定依据,如:过电流保护、速断保护、灵敏系数校验等。

在配置高压配电系统中的继电保护和自动装置,以及其整定计算和灵敏系数的校验时,应考虑配电系统的最大运行方式和最小运行方式下的短路计算结果。最大运行方式是指系统投入的电源容量最大时,系统具有最小的短路阻抗值,发生短路后产生的短路电流最大的一种运行方式。一般根据系统最大运行方式的短路电流值来校验所选用的开关电器的稳定性。最小运行方式是指系统投入的电源容量最小时,系统具有最大的短路阻抗值,发生短路后产生的短路电流最小的一种运行方式。一般根据系统最小运行方式的短路电流值来校验继电保护装置的灵敏系数。

最大、最小运行方式用等值电抗表示时,分别对应于系统最小和最大电抗。系统最小和最大电抗是短路电流计算的重要参数。

5.1.3 短路电流的计算

在供配电系统中,发生单相短路的可能性最大,而发生三相短路的可能性最小,但从短路电流大小来看,三相短路的短路电流最大,造成的危害也最为严重。三相短路属于对称性短路,而其他形式的短路为不对称性短路。为使数据中心供配电系统中的电气设备在最严格的短路状态下也能可靠地工作,在作为选择和校验电气设备用的短路计算中,应以三相短路计算为主。

在短路电流计算时,首先要引入无穷大功率电源这个概念。

无穷大功率电源是指供电容量相对于用户供电系统容量大得多的电力系统。即如果电力系统的电源总阻抗不超过短路电路总阻抗的5%~10%,或者电力系统容量超过用户供电系统容量的50倍时,可将电力系统视为无穷大功率电源。对于数据中心供配电系统来说,其容量远小于市政供电网络总容量,而阻抗又较市政供电网络大得多,因此,当数据中心供配电系统内发生短路时,数据中心一级高压配电系统上一级的公共变电站或数据中心专用变电站的配电母线上的电压几乎维持不变,也就是说可将市政供电网络视为无穷大功率的电源。

无穷大功率电源的特征为:当用户供电系统的负荷变动甚至发生短路时,电力系统变电所配电母线上的电压能基本保持不变。

在一个无穷大功率电源供电系统中发生三相短路时,其对称短路电流初始值按下式计算。

式中 I k ——对称短路电流初始值(kA);

U av ——短路点的短路计算电压(0.4kV、10.5kV、21kV、37kV);

Z ——短路电路的总阻抗;

R ——短路电路的总电阻值(Ω);

X ——短路电路的总电抗值(Ω)。

当数据中心高压侧发生短路时,在短路计算中,通常总电抗远比总电阻大,所以一般只计总电抗值,不计总电阻值。当数据中心低压侧发生短路时,也只有当总电阻值大于总电抗值的三分之一时才需计入电阻值。

如果不计总电阻值,即 R 远小于 X ,则:

式(5-2)则变为

在无穷大功率电源的供电系统中,系统母线电压可以看作是不变的,其短路电流周期分量有效值 I k 在短路全过程中维持不变。在校验高低压电气设备时还有两个重要的物理量,即短路冲击电流 i sh 和短路冲击电流有效值 I sh

短路冲击电流是指短路全电流中的最大瞬时值,可由下式计算:

短路冲击电流有效值是短路后第一个周期的短路电流有效值,又称为短路全电流的最大有效值,可由下式计算:

式(5-5)和式(5-6)中的 K sh 为短路电流冲击系数,在高压电路发生短路时,一般取 K sh =1.8,则有

在低压电路发生短路时,即数据中心变压器低压侧及低压电路中发生三相短路时,一般取 K sh =1.3,则有

供电电路的短路点的短路容量是短路点所在供电网络的平均额定电压与短路电流稳态值的乘积,例如三相短路容量( S k )为

由式(5-4)可见,求三相短路电流周期分量有效值的关键是要求出短路回路总电抗值。在数据中心供配电系统中,母线、电流互感器一次绕组、低压断路器过电流脱扣器线圈等阻抗及开关触头的接触电阻均相对较小,在一般短路计算中都可以忽略不计,而只考虑电力系统(市电引入电源)、变压器设备和电力线路的阻抗计算。在略去上述阻抗后,计算所得的短路电流会略比实际值偏大,但用略有偏大的短路电流来选择和校验诸如断路器、熔断器、负荷开关等电气设备,却可以使其运行的安全性更有保证。

在计算数据中心供配电系统某一点的短路电流时,应考虑短路点前端的总电抗值。图5-2中供电系统过的总电抗由变电站、电缆1、高压开关柜、电缆2、变压器、母线和低压开关柜组成,因高压开关柜、电缆2、母线、低压开关柜的阻抗值很小,在K 1 、K 2 点的短路电流计算时可忽略不计。

图5-2 数据中心供电系统短路计算电路图

如果在供配电系统设计中,需要对断路器、电流互感器、负荷开关等元器件进行校验时,则需要对图5-2中K 1 、K 2 两点进行短路电流计算。

1.电力系统的短路电流计算

为了取得合理的经济效益,电力网络的各级电压的短路容量从网络设计、电压等级、变压器容量、阻抗选择、运行方式等方面进行控制,使各级电压断路器的开断电流以及设备的动热稳定电流相配合。在变电站内的系统母线,一般不超过表5-1中的数值。

建议在220kV及以上变电站的低压侧选取表5-1中较高的数值,110kV及以下变电站的低压侧选取表5-1中较低的数值;一般高压配电线路上的短路容量将沿线路递减,因此沿线挂接的配电设备的短路容量可再适当降低标准;若单路市电供电回路容量超过一般情况,必要时经过技术经济论证可超过表5-1中规定的数值。

表5-1 各电压等级电力网络的短路电流

在数据中心设计中,电力系统就是数据中心一级高压配电系统的上一级变电站配电系统。变电站配电系统的电阻相对于电抗来说很小,可以不予考虑。配电系统的电抗可用变电站配电系统的馈电线出口断路器的短路容量 S (MV·A)来估算。将 S 看作变电站配电系统的极限短路容量 S k ,则变电站配电系统的电抗为

为了便于短路回路总阻抗的计算,免去阻抗换算的麻烦,式(5-12)中的 U av 可直接采用短路计算电压(短路点的计算电压,单位为V); S 为系统出口断路器的断流容量,可查有关手册或产品样本得出。如果只有断路器的开断电流 I 数据,则其断流容量 ,根据数据中心市电引入电压等级, U N = U av 为出口断路器的额定电压(10.5kV或21kV或37kV)。

数据中心用电力系统断流容量和电抗与断路器开断电流的关系见表5-2。

表5-2 数据中心用电力系统断流容量和电抗与断路器开断电流的关系

城市高、低压配电网的短路电流水平见表5-3。

表5-3 城市高、低压配电网的短路电流水平

2.变压器的阻抗计算

变压器的阻抗 Z T 由电阻 R T 和电抗 X T 组成。

(1)变压器的电阻

变压器的电阻 R T 可由变压器的短路损耗近似计算,因为

则有

式中 S N ——变压器的额定容量(kV·A);

Δ P k ——变压器的短路损耗(负荷损耗)(kW);

U av ——短路点的计算电压,400V。

变压器的短路损耗可在有关产品手册中查询。

(2)变压器的电抗

变压器的电抗 X T 可由变压器的短路电压 U k %近似计算。

则有

式中 U k %——变压器的短路电压(或称阻抗电压)百分值,可查阅有关产品手册。

【例】表5-2中1600kV·A变压器 S N 为1600kV·A;Δ P k 为11730W; U av 为0.4kV; U k %为6%,求电阻 R T 和电抗 X T

解:已知变压器的 S N 、Δ P k U k %, U av 为400V。

根据电阻计算公式,计算如下

根据电抗计算公式,计算如下

表5-4~表5-7中的数据可供设计人员参考。

表5-4 10kV/0.4kV干式变压器技术指标与电阻及电抗关系表

注:表中变压器损耗数据为节能型变压器能耗数据(F绝缘等级,120°)。

表5-5 20kV/0.4kV干式变压器技术指标与电阻及电抗关系表

表5-6 35kV/10kV干式变压器技术指标与电阻及电抗关系表

表5-7 35kV/0.4kV干式变压器技术指标与电阻及电抗关系表

从表5-4~表5-7中数据看,变压器的电抗 X T 远大于变压器的电阻 R T ,这有利于设计人员对高低压断路器的短路电流的简化计算和校验。

设计人员也可根据表5-4~表5-7中的 R T X T 估算变压器的最大短路电流值(见6.6.3小节)。

3.电力线路的阻抗计算

1)电力线路的电阻。

电力线路的电阻 R WL 可用导线或电缆的单位长度电阻 r 0 值求得,即

式中 r 0 ——导线或电缆单位长度电阻(Ω/km),可查阅有关产品手册;

l ——线路长度(km)。

2)电力线路的电抗。

电力线路的电抗 X WL 可用导线或电缆的单位长度电抗 x 0 值求得,即

式中 x 0 ——导线或电缆单位长度电抗(Ω/km),可查阅有关产品手册;

l ——线路长度(km)。

如果线路的结构数据不详时, x 0 可按表5-8取其电抗平均值。

表5-8 电力线路每相的单位长度电抗平均值参考表(单位:Ω/km)

需要注意的是,在计算架空线路或电缆线路的阻抗时,若此段线路含有变压器时,则电路内各段线路的阻抗都应统一换算到短路点的短路计算电压中去。阻抗等效换算的条件是线路功率损耗不变。即在计算数据中心变压器低压侧电缆线路的阻抗时,需要对由变电站来的所有电缆线路的阻抗进行换算,也就是说将变压器高压侧的电缆线路阻抗折算到短路点(变压器低压侧)。

根据线路的阻抗值与电压平方成正比的原则,换算公式如下:

式中 R X U av ——换算前线路的电阻(Ω)、电抗(Ω)、变压器高压侧电压(kV);

R ′、 X ′、 ——换算后的电阻(Ω)、电抗(Ω)、变压器低压侧电压(kV)。

4.数据中心供配电系统主要点的短路电流计算

短路电流计算是一个比较复杂的过程,为了简化短路电流的计算,且保证有效地选择和校验各种电气设备的机械(动)稳定、热稳定及分断能力,可以采用最常用的欧姆法进行短路电流的计算。从式(5-2)中可以看出,若要准确地计算系统某点的短路电流,主要取决于这点以上供电部分的阻抗的取定。

(1)高压配电系统市电电源输入端短路电流计算

若计算数据中心市电输入端的短路电流需要已知以下条件:

1)市电引入电压等级(10kV、20kV、35kV)。

2)上级变电站(所)的出口断路器的断流容量 S (MV·A),其断流容量由供电部门给出,若供电部门不能给出断流容量,则需要了解出口断路器的开断电流 I (kA)。

3)市电引入架空线的长度(km)。

4)市电引入电缆的长度(km)。

则总阻抗等于变电站配电系统的阻抗和市电电源引入线路阻抗之和,再根据式(5-21)计算出高压配电系统市电电源输入端短路电流。

(2)变压器输出侧短路电流计算

若计算数据中心变压器低压输出侧的短路电流需要已知以下条件:

1)上级变电站(所)配电系统电抗 X s

2)市电引入架空线的长度(km),计算其电抗(折算后的)。

3)市电引入电缆的长度(km),计算其电抗(折算后的)。

4)变压器电抗。

5)变压器输出线阻抗,一般可以忽略。

则总阻抗等于电力系统电抗、市电电源引入线路电抗、变压器阻抗及变压器输出线阻抗之和,再根据式(5-21)计算出变压器低压输出侧短路电流。 HgyLX6Y0M2QzpUt0SIm605V6CE3f88K4+2jM45GHeIaMWmX8NsTlkETnpkMZ4bt2



5.2 主要电气设备选择与校验

数据中心变配电系统不同于一般的民用建筑的变配电系统,更不同于大多数工业企业中的变配电系统,数据中心往往在变配电系统的主要元器件选择上对其质量有更高的要求。本节将介绍数据中心变配电系统中主要电气设备的具体选择和校验方法。

在数据中心变配电设计中,由于在高低压断路器的选用上要求很高,所以,很多设计人员往往都不对系统配置的诸如高压断路器、低压断路器的开断电流及短路电流进行校验,而只是凭经验根据容量及分断能力的选择。本节将介绍数据中心用高压断路器和低压断路器的选择条件和校验方法。

5.2.1 电气设备选择与校验的一般原则

在一般民用建筑工程项目中,电力系统的各种电气设备的作用和工作条件都不同,不同行业的电力系统的要求也不同。在数据中心电气设备的选择上,应按正常工作条件及环境条件进行选择,并按短路电流计算来校验。

为了保证高压电器的可靠运行,高压元器件应按以下几个条件进行选择:

1)按正常工作条件包括电压、电流、开断电流等选择。

2)按短路条件包括动稳定、热稳定和持续时间校验。

3)按环境条件如温度、湿度、海拔、介质状态等选择。

4)按各类高压元器件的不同特点,如断路器的操作性能、互感器的二次侧负载和准确等级,熔断器的上下级选择性配合等进行选择。

常用高低压电气设备选择校验项目见表5-9。

表5-9 常用高低压电气设备选择校验项目表

表5-9中设备的额定电压、额定电流和环境条件为选择项目;额定开断电流、动稳定和热稳定为校验项目。

5.2.2 按工作电压和工作电流选择

表5-9中设备的额定电压和额定电流应按它们的正常工作条件来选择。设额定电压为 U e ,那么 U e 应符合设备装设点供电网络的额定电压,并应不小于正常工作时可能出现的最大工作电压 U g (不包括供电网络出现的瞬变电压),即

表5-9中设备的额定电流 I e 应不小于正常工作时的可能出现的最大持续工作电流 I g ,即

数据中心采用室外箱式变电站时,当电气设备的额定环境温度与实际环境温度不一致时,其最大允许工作电流按表5-10进行修正。

表5-10 高压一次元器件工作电流选择修正表

注: I e ——高压元器件额定电流(A);

θ ——实际环境温度(℃);

θ e ——额定环境温度,普通型和湿热带型为+40℃,干热带型为+45℃。

1.高压断路器

根据全国供用电规则,受电端的电压波动不应超过如下范围:35kV及以下供电和对电压质量有特殊要求的用户为额定电压的±5%;10kV及以下高压供电和低电力用户为额定电压的±7%。数据中心外市电电压等级分别有10kV、20kV和35kV,其采用的高压开关柜及高压断路器的额定电压分别为12kV(10kV)、24kV(20kV)和40.5kV(35kV),所以,数据中心所选择的高压开关柜和高压断路器的额定电压均高于全国供用电规则所规定的公共电网可能出现的最高运行电压。

数据中心用10kV高压发电机组的输出电压整定范围为±5%,其电压波动范围更小(不包括瞬态变化),故数据中心所选择的高压开关柜和高压断路器的额定电压均高于数据中心用柴油发电机组可能出现的最高运行电压。

数据中心高压开关柜和高压断路器常用的额定电流为630A、1250A,当单回路市电引入容量很大时,可能在个别情况下会出现额定电流为1600A的高压断路器。

高压断路器分为进线断路器、联络断路器和馈电断路器,其中进线断路器的容量应根据单回路市电电源最大持续工作电流进行选择,即该套高压开关柜所带全部用电设备的最大持续工作电流;联络断路器的容量应根据两段母线中较大的用电设备的最大持续工作电流(即所接变压器容量较大的母线段最大工作电流)进行选择;馈电断路器的容量应根据该回路所接的用电设备的最大持续工作电流进行选择。如果馈电断路器的用电设备为变压器,则馈电断路器的容量应根据变压器额定容量进行选择。

例如:某数据中心的变压器总容量为7台2000kV·A变压器,两个10kV高压母线段分别接3台变压器和4台变压器,求流过它的馈电断路器和联络断路器的每相最大工作电流(不计变压器的损耗)。

1)馈电断路器的每相最大工作电流按下式计算

2)联络用断路器的每相最大工作电流按下式计算

数据中心用单台10/0.4kV变压器设备最大容量为2500kV·A,其10kV额定电压时的额定电流(含变压器损耗)为146A左右,而高压断路器最小容量为630A,在以往数据中心工程设计中,变压器出线柜的高压断路器均选择630A高压断路器,对此,设计人员均无需做高压断路器的电流校验计算。

数据中心高压配电系统进线断路器的额定电流最常见的是630A和1250A,在设计时,设计人员可根据公共电网引入容量来选择进线断路器容量。其公共电网单回路供电容量及额定电流见表5-11。

表5-11 公共电网单回路供电容量及额定电流表

(续)

2.低压断路器

根据全国供用电规则,低压受电端的电压波动不应超过额定电压的±7%。数据中心采用的低压开关柜及断路器的额定电压不低于600V,远高于数据中心低压设备额定工作电压,也高于低压发电机组额定电压。

低压断路器分为进线断路器、馈电断路器、联络断路器等,其中变压器低压侧进线断路器是一个数据中心容量最大的低压断路器,它的容量一般是根据变压器额定容量进行选择;二级配电系统及三级配电系统是根据各级配电系统所接全部用电设备的最大持续工作电流进行选择;馈电断路器是根据所接用电设备最大工作电流进行选择;联络断路器是根据两段低压母线中较大容量的最大持续工作电流进行选择。

变压器低压侧进线断路器容量与变压器额定容量成正比,不同容量变压器的低压侧额定电流见表5-12。

表5-12 变压器额定容量、低压侧额定电流及进线断路器容量表

3.其他电气设备

除了高低压开关设备及高低压断路器外,其他诸如高压熔断器、电流互感器、电压互感器、负荷开关、隔离开关等设备,其最高电压均不小于所在回路的系统最高电压。当选择上述设备的额定电流时,应保证其额定电流不小于该回路的最大持续工作电流。

5.2.3 按开断电流选择

数据中心高低压配电系统中最重要的设备就是高低压断路器,其短路开断能力(分断能力)应使用计算短路点最大短路电流进行校验。

1.高压断路器

数据中心用高压断路器最常见的参数指标见表5-13。

表5-13 高压断路器参数

每个数据中心都设有一级高压配电系统,它的外市电引入通常由公共电网变电站引接。在计算和校验一级高压配电系统中进线断路器的开断能力时,需要知道数据中心外市电引接的电力系统出口断流容量(供电部门提供)和电力线路的电抗,再根据公式计算出短路电流和短路容量,并对所选择的高压断路器(10kV、20kV、35kV)的开断能力进行校验。

【例】某数据中心供电系统如图5-3所示,已知变电站电力系统的出口断路器的断流容量 S =500MV·A,供电电压等级为10kV,从出口断路器至数据中心高压开关进线柜采用0.5km电力电缆引入,市电引入容量为12000kV·A。数据中心高压进线侧采用1250A的VD4真空断路器,该断路器的额定短路开断电流及额定短路关合电流(峰值)分别为25kA和63kA,请计算外市电引入10kV线路上K 1 点短路和变压器低压侧线路上K 2 点短路的三相短路电流和短路容量。

图5-3 数据中心供电系统

解: (1)先计算短路电路中各元件的电抗及总电抗

根据公式:

变电站电力系统的电抗 X s =(10.5 2 /500)Ω=0.22Ω。

根据公式与查表5-6计算,电力线路的电抗如下:

X x = X 0 l =(0.08×0.5)Ω=0.04Ω

总电抗 X

X = X s + X x =(0.22+0.04)Ω=0.26Ω

(2)计算三相短路电流和短路容量

根据公式:

短路容量为

(3)三相冲击电流计算
(4)断路器额定电流计算
(5)断路器选择与校验

根据VD4真空断路器技术数据,对选定的真空断路器进行校验,见表5-14。

表5-14 高压断路器的选择校验表

K 2 点短路的三相短路电流和短路容量见低压断路器部分。

数据中心的外市电通常是由公共电网变电站直接引入,其变电站出口断路器的开断电流一般选用25kA和31.5kA。设出口断路器开断电流为 ,数据中心外市电引入端开断电流为 I k ,根据三相短路电流计算公式 X 为变电站电抗和电力电缆电抗之和,因电力电缆电抗大于0,所以

31.5kA和25kA相差6.5kA,我们可以计算折合到电缆电抗的差值,设数据中心外市电引入端开断电流为31.5kA时,变电站电力系统电抗和市电引入线路之和的理论电抗为 X 1 ,25kA时变电站电力系统电抗和市电引入线路之和的理论电抗为 X 2 X 1 X 2 之差为 X ′,则

即使上述计算为简化计算,我们也能得出以下结论:

1)当变电站出口断路器的开断电流选用25kA时,数据中心一级高压配电系统选用开断电流为25kA的进线断路器。

2)当变电站出口断路器至数据中心一级高压配电系统市电接线端的线路电抗不小于0.05(用表5-8相关数据计算线路电抗),且变电站出口断路器的开断电流选用31.5kA时,数据中心一级高压配电系统可选用开断电流为25kA的进线断路器。

3)简便选择方法为数据中心一级高压配电系统进线断路器的开断电流不低于其上一级变电站的出口断路器的开断电流。

另外,由图5-2可以看出,设10kV侧系统短路容量无穷大时,其变压器低压侧短路电流最大,在设置继电保护时,需要变压器最大短路电流。

2.低压断路器

对于数据中心的低压配电系统,进出线保护器件均采用断路器保护。

为了保证低压元器件的可靠运行,低压断路器开断电流(分断能力)能力选择见表5-15。

表5-15 变压器额定容量、低压进线断路器形式及参数表

接第80页的例题,K 2 点短路的三相短路电流和短路容量计算如下。

因K 2 点的电压等级为400V(0.4kV),此段线路含有变压器,则需将10kV段线路的阻抗换算到K 2 短路点的短路计算电压中去。设忽略阻抗,根据换算公式(5-20),电缆线路电抗为

电力系统电抗

变压器电抗按表5-4查得为4.8mΩ(0.0048Ω)。

K 2 点的短路等效电路的总电抗为变电站电力系统的电抗( )、10kV电缆电抗( X′ )和变压器电抗之和,即

根据以上的已知条件,计算K 2 点的三相短路电流和短路容量。

(1)三相短路电流周期分量的有效值为
(2)短路容量为
(3)断路器额定电流计算
(4)设选择的低压进线断路器型号为EXX-4000A, U e 为690V, I cu 为85kA的低压断路器。

根据断路器技术数据,对选定的低压断路器进行校验,见表5-16。

表5-16 低压断路器的选择校验表

5.2.4 断路器的短路热稳定性和短路动稳定性校验

1.短路热稳定性校验

数据中心用高压断路器,其热稳定电流 I t 与开断电流相等。对于无限大容量系统来说,断路器短路热稳定性校验公式如下:

式(5-24)中,数据中心用高压(10kV、20kV、35kV)断路器的热稳定时间 I t 一般为4s, I t 的二次方远大于短路电流 I k I )的二次方,热稳定时间 t 大于短路点的短路时间 t max ,所以,式(5-24)始终成立。

2.短路动稳定性校验

断路器短路动稳定性校验条件公式为

式中 i sh ——三相短路冲击电流;

i max ——断路器的额定峰值耐受电流,因 i sh =2.55 I k ,所以,在数据中心高压断路器选择中,式(5-25)始终成立。

在数据中心供配电设计中,若断路器开断电流通过了校验,一般即可省略断路器的短路热稳定性和短路动稳定性校验。

5.2.5 柴油发电机组短路电流计算

数据中心用柴油发电机组分为高压发电机组和低压发电机组,高压发电机组一般采用并机运行方式,低压发电机组则采用单机运行方式。在计算它们的短路电流时,需要知道发电机组的容量、电压、发电机定子电阻、发电机短路电抗标幺值等机组配套的发电机相关参数,再根据公式计算单台和多台并机发电机组的短路电流。

但实际上,在数据中心工程设计中,一般设计人员都不对数据中心配套的柴油发电机组的短路电流进行计算,这是因为数据中心用柴油发电机组配套的发电机基本为斯坦福、利莱森玛、马拉松、英格等品牌的发电机,它们的三相对称短路电流一般为额定电流的7倍左右。因为高压发电机组的输出断路器的分断能力为25kA,低压发电机组的输出断路器的短路分断能力( I cu )为50~80kA,所以它们的短路电流远小于其输出高压或低压断路器的短路分断能力。

不同容量的高压、低压发电机组的三相对称短路电流可参考表5-17。

表5-17 常用高、低压发电机组短路电流估算值表

高压发电机组多台并机系统的短路电流可根据发电机组的单台短路电流乘以并机台数进行估算。

高压发电机组的三相短路峰值电流 I p 也可用式(5-7)进行估算,即 I p 约等于2.55 I k ,三相短路峰值电流一般为额定电流的17倍左右。

如果在工程设计时,需要对发电机组的短路电流进行准确计算,设计人员可根据发电机组供应商提供的发电机组的配套发电机详细的短路电流技术数据或短路电流曲线进行相关计算。 HgyLX6Y0M2QzpUt0SIm605V6CE3f88K4+2jM45GHeIaMWmX8NsTlkETnpkMZ4bt2

点击中间区域
呼出菜单
上一章
目录
下一章
×