购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

1.4 研究目的与主要内容

干旱是湿地生态系统最主要的胁迫因子之一。针对近年来鄱阳湖区干旱频发,且不断加剧,打破了湿地生态系统与周期性水文变化之间的动态平衡,已严重威胁湿地生态系统的结构与功能,影响湿地生态系统服务功能的发挥等问题,本书以鄱阳湖及其洲滩湿地植被为主要研究对象,重点介绍鄱阳湖极端枯水的基本特征与水储量变化,分析江—湖—河系统联合干旱概率特征及其影响因素,模拟揭示湖泊—流域系统干旱的传递过程与多因素驱动机制,基于遥感时空融合方法研究鄱阳湖湿地景观类型空间格局及转移变化过程,阐明鄱阳湖典型湿地植物群落稳定性、多样性及生物量分布格局对水情变化的响应关系,通过CASA模型模拟分析鄱阳湖湿地植被NPP时空变化特征及其驱动因素,并为科学应对鄱阳湖极端干旱事件、维持湿地生态系统健康、保障生态服务功能的发挥等提出建议和应对策略。本书可为进一步认识鄱阳湖极端枯水的发生机理、提高湿地生态系统稳定性与抵抗力、保障湿地生态服务功能等提供参考。

本书的内容主要包括四个部分。第一部分介绍鄱阳湖的重要性及目前面临的主要问题和国内外相关研究进展情况;第二部分为鄱阳湖枯水情势与水储量变化特征、江—湖—河系统联合干旱概率特征以及鄱阳湖枯水成因机制模拟;第三部分介绍鄱阳湖湿地景观类型空间格局转移变化、湿地植物群落稳定性与生物量、湿地植被NPP时空变化以及对水情的响应关系;第四部分为本书的总结和未来研究展望。

【参考文献】

[1]Abbasi A,Khalili K,Behmanesh J,et al.,2019.Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake[J].Theoretical and applied climatology,138(1-2):553-567.

[2]Alsdorf D E,et al.,2000.Interferometric radar measurements of water level changes on the Amazon flood plain[J].Nature,404(6774):174-177.

[3]Assani A A,Landry R,Azouaoui O,et al.,2016.Comparison of the characteristics(frequency and timing)of drought and wetness indices of annual mean water levels in the five North American Great Lakes[J].Water resources management,30(1):359 -373 .

[4]Austin A T,Vivanco L I A,2006.Plant litter decomposition in a semi-arid ecosystem controlled by photo degradation[J].Nature,442(7102):555 -558.

[5]Batt R D,Carpenter S R,Ives A R,2017.Extreme events in lake ecosystem time series[J].Limnology and oceanography letters,2(3):63-69.

[6]Beniston M,et al.,2007.Future extreme events in European climate:an exploration of regional climate model projections[J].Climatic change,81:71-95.

[7]Berdugo M,Delgado-Baquerizo M,Soliveres S,et al.,2020.Global ecosystem thresholds driven by aridity[J].Science,367:787-790.

[8]Bing J P,et al.,2018.Flood coincidence analysis of Poyang Lake and Yangtze River:risk and influencing factors [J].Stochastic environmental research and risk assessment,32(4):879-891.

[9]Biron S,Assani A A,Frenette J J,et al.,2014.Comparison of Lake Ontario and St.Lawrence River hydrologic droughts and their relationship to climate indices[J].Water resources research,50(2):1396-1409.

[10]Blanch S J,Ganf G G,Walker K F,1999.Tolerance of riverine plants to flooding and exposure indicated by water regime[J].Regulated rivers:research and management,15:43-62.

[11]Bolgov M V,Buber A L,Korobkina E A,et al.,2017.Lake Baikal:extreme level as a rare hydrological event[J].Water resources,44(3):522-536.

[12]Bond N R,Lake P,Arthington A H,2008.The impacts of drought on freshwater ecosystems:an Australian perspective[J].Hydrobiologia,600:3-16.

[13]Bornman T G,Adams J B,Bate G C,2008.Environmental factors controlling the vegetation zonation patterns and distribution of vegetation types in the Olifants Estuary,South Africa[J].South African journal of botany,74(4):685-695.

[14]Buma W G,Lee S I,2019.Multispectral image-based estimation of drought patterns and intensity around Lake Chad,Africa[J].Remote sensing,11(21):21.

[15]Carter E,Steinschneider S,2018.Hydroclimatological drivers of extreme floods on Lake Ontario[J].Water resources research,54(7):4461-4478.

[16]Casanova M T,Brock M A,2000.How do depth,duration and frequency of flooding influence the establishment of wetland plant communities[J].Plant ecolology,147:237 -250 .

[17]Chiew F H S,Whellon P H,Memahon T A,et al.,1995.Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments[J].Journal of hydrology,167:121-147.

[18]Cramer W,Bondeau A,Woodward I,et al.,2010.Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models[J].Global change biology,7(4):357-373.

[19]Dwire K A,Kauffman J B,Baham J E,2006.Plant species distribution in relation to water table depth and soil redox potential in montane riparian meadows[J].Wetlands,26:131-146.

[20]Engloner A I,2004.Annual growth dynamics and morphological differences of reed in relation to water supply[J].Flora-morphology,distribution,functional ecology of plants,199(3):256-262.

[21]Feng L,Hu C,Chen X,et al.,2012.Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010[J].Remote sensing of environment,121:80-92.

[22]Gacia E,Ballesteros E,1996.The effect of increased water level on Isoetes lacustris L.in Lake Baciver,Spain[J].Journal of aquatic plant management,34:57-59.

[23]Ghale Y A G,Altunkaynak A,Unal A,2018.Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis[J].Water resources management,32(1):325-337.

[24]Griffin-Nolan R J,Carroll C J W,Denton E M,et al.,2018.Legacy effects of a regional drought on aboveground net primary production in six central US grasslands[J].Plant ecology,219(5):505-515.

[25] Hammersmark C T,Rains M C,Wickland A C,et al.,2009.Vegetation and watertable relationships in a hydrologically restored riparian meadow[J].Wetlands,29(3):785-797.

[26]Han X,Chen X,Feng L,2015.Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013[J].Remote sensing of environment,156:426-437.

[27]He H,Wang S,Zhang L,et al.,2019.Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus[J].National science review,6(3):505-514.

[28]Hilker T,Lyapustin A I,Tucker C J,et al.,2014.Vegetation dynamics and rainfall sensitivity of the Amazon[J].Proceedings of the national academy of sciences of the United States of America,111(45):16041-16046.

[29]Huang L,He B,Chen A,et al.,2016.Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems[J].Scientific reports,6:24639.

[30]Huang M T,Wang X H,Keenan T F,et al.,2018.Drought timing influences the legacy of tree growth recovery[J].Global change biology,24:3546-3559.

[31]Hutyra L R,Yoon B,Alberti M,2011.Terrestrial carbon stocks across a gradient of urbanization:a study of the Seattle,WA region[J].Global chang biology,17:783 97 .

[32]Ivits E, Horion S,Fensholt R,et al.,2014.Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity[J].Global change biology,20(2):581-593.

[33]Jalbert J, Murphy O A, Genest C,et al.,2019.Modelling extreme rain accumulation with an application to the 2011 Lake Champlain flood[J].Journal of the royal statistical society series c-applied statistics,68(4):831-858.

[34]Ji Y,Zhou G,Luo T,et al.,2020.Variation of net primary productivity and its drivers in China's forests during 2000-2018[J].Forest ecosystems,7(1):190-200.

[35]Jiang H,Xu X,Guan M,et al.,2020.Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015[J].Science of the total environment,718.

[36]John R,Chen J,Ou-Yang Z,et al.,2013.Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010[J].Environmental research letters,8(3):035033.

[37]Kienzler P, Andres N, Naf-Huber D,et al.,2015.Derivation of extreme precipitation and flooding in the catchment of Lake Sihl to improve flood protection in the city of Zurich[J].Hydrologie und wasserbewirtschaftung,59(2):48-58.

[38]Klamt A M,et al.,2020.An extreme drought event homogenises the diatom composition of two shallow lakes in southwest China[J].Ecological indicators,108:105704.1-105704.11.

[39]Krüger J J,Tarach M,2022.Greenhouse gas emission reduction potentials in Europe by sector:a bootstrap-based nonparametric efficiency analysis[J].Environmental and resource economics,81(4):867-898.

[40]Laine J,Vasander H,Laiho R,1995.Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland[J].Journal of applied ecology,33:785-790.

[41]Lehner B,Doll P,2004.Development and validation of a global database of lakes,reservoirs and wetlands[J].Journal of hydrology,296(1-4):1-22.

[42]Lei Y,et al.,2019.Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El Nino[J].Geophysical research letters,46(11):5889-5898.

[43] Li S,Pezeshki S R,Goodwin S,2004.Effects of soil moisture regimes on photosynthesis and growth in cattail[J].Acta oecologica,25(1-2):17-22.

[44]Li T Y,Li S Y,Bush R T,et al.,2018.Extreme drought decouples silicon and carbon geochemical linkages in lakes[J].Science of the total environment,634:1184 -1191 .

[45]Li X,Zhang Q,Hu Q,et al.,2017.Lake flooding sensitivity to the relative timing of peak flows between upstream and downstream waterways:a case study of Poyang Lake,China[J].Hydrological processes,31(23):4217-4228.

[46]Li X H,Yao J,Li Y L,et al.,2016.A modeling study of the influences of Yangtze River and local catchment on the development of floods in Poyang Lake,China[J].Hydrology research,47:102-119.

[47]Li Y,Zhang Q,Werner A D,et al.,2017.The influence of river-to-lake backflow on the hydrodynamics of a large floodplain lake system (Poyang Lake,China)[J].Hydrological processes,31(1):117-132.

[48]Li Y L,Zhang Q,Yao J,et al.,2019.Assessment of water storage response to surface hydrological connectivity in a large floodplain system (Poyang Lake,China) using hydrodynamic and geostatistical analysis[J].Stochastic environmental research and risk assessment,33(11-12):2071-2088.

[49]Liu H Y,et al.,2018.Preliminary numerical analysis of the efficiency of a central lake reservoir in enhancing the flood and drought resistance of Dongting Lake[J].Water,10(2):12.

[50]Liu Y,Wu G,2016.Hydroclimatological influences on recently increased droughts in China's largest freshwater lake[J].Hydrology and Earth system sciences,20(1):93 -107 .

[51]Lu F,Hu H,Sun W,et al.,2018.Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J].Proceedings of the national academy of sciences of the United States of America,115(16):4039-4044.

[52]Lu X X,Yang X K,Li S Y,2011.Dam not sole cause of Chinese drought[J].Nature,475:174.

[53]Ma R,Duan H,Hu C,et al.,2010.A half-century of changes in China's lakes:global warming or human influence? [J/OL]Geophysical research letters,37:L24106[2023-6-21].http://dx.doi.org/10.1029/2010gl045514.

[54]Ma Z,Peng C,Zhu Q,et al.,2012.Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests [J].Proceedings of the national academy of sciences of the United States of America,109(7):2423-2427.

[55] Maltby E,Ormerod S,2011.Freshwaters:open waters,wetlands and floodplains[M]//UK National Ecosystem Assessment.The UK national ecosystem assessment technical report.Cambridge:295-360.

[56]Maltchik L,Rolon A,Schott P,2007.Effects of hydrological variation on the aquatic plant community in a floodplain palustrine wetland of southern Brazil[J].Limnology,8(1):23-28.

[57]Mao D,Wang Z,Li L,et al.,2014.Quantitative assessment of human-induced impacts on marshes in Northeast China from 2000 to 2011 [J].Ecological engineering,68(7):97-104.

[58]Messager M L,Lehner B,Grill G,et al.,2016.Estimating the volume and age of water stored in global lakes using a geo-statistical approach [J].Nature communications,7:13603.

[59]Milesi C,Elvidge C D,Nemani R R,et al.,2003.Assessing the impact of urban land development on net primary productivity in the southeastern United States[J].Remote sensing of environment,86:401-410.

[60] Mitsch W J,Gosselink J G,2000.Wetlands[M].New York:John Wiley &Sons,INC.

[61]Myronidis D,Stathis D,Ioannou K,et al.,2012.An integration of statistics temporal methods to track the effect of drought in a shallow mediterranean lake[J].Water resources management,26(15):4587-4605.

[62]Nandintsetseg B,Greene J S,Goulden C E,2007.Trends in extreme daily precipitation and temperature near Lake Hovsgol,Mongolia[J].International journal of climatology,27(3):341-347.

[63]Ni J,2004.Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China[J].Plant ecology,174(2):217-234.

[64]Pagter M,Bragato C,Brix H,2005.Tolerance and physiological responses of Phragmites australis to water defici[J].Aquatic botany,25(3):520-530.

[65]Paynter S,Nachabe M,2011.Use of generalized extreme value covariates to improve estimation of trends and return frequencies for lake levels [J].Journal of hydroinformatics,13(1):13-24.

[66] Qiu J,2011.Drought forces state council to confront downstream water supply problems[J].Nature,2011:315.

[67]Riboust P,Brissette F,2015.Climate change impacts and uncertainties on spring flooding of Lake Champlain and the Richelieu River[J].Journal of the American water resources association,51(3):776-793.

[68]Riis T,Hawes I,2002.Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes[J].Aquatic botany,74(2):133 -148 .

[69]Running S W,Nemani R R,Ann H F,et al.,2004.A continuous satellite-derived measure of global terrestrial primary production[J].Bioscience,54(6):547-560.

[70]Satge F,et al.,2017.Role of climate variability and human activity on Poopo Lake droughts between 1990 and 2015 assessed using remote sensing data[J].Remote sensing,9(3):17.

[71]Schreider S Y,Jakemen A L,Pittock A B,et al.,1996.Estimation of possible climate change impacts on water availability,extreme flow event and soil moisture in Goulburn end Oven basins,Victoria[J].Climate change,34:513-546.

[72]Shabani A,Zhang X D,Chu X F,et al.,2020.Mitigating impact of Devils Lake flooding on the Sheyenne River sulfate concentration[J].Journal of the American water resources association,56(2):297-309.

[73]Shankman D,et al.,2012.Hydroclimate analysis of severe floods in China's Poyang Lake region[J].Earth interactions,16:16.

[74]Shankman D,Keim B D,Song J,2006.Flood frequency in China's Poyang Lake region:trends and teleconnections[J].International journal of climatology,26(9):1255 -1266 .

[75]Sharifi A,Kalin L,Hantush M M,et al.,2013.Carbon dynamics and export from flooded wetlands:a modeling approach[J].Ecological modelling,263(1765): 196 -210 .

[76]Shiri J,et al.,2016.Prediction of water-level in the Urmia Lake using the extreme learning machine approach [J].Water resources management,30 (14):5217 -5229 .

[77]Song L,Li Y,Ren Y,et al.,2019.Divergent vegetation responses to extreme spring and summer droughts in Southwestern China [J].Agricultural and forest meteorology,279:107703.

[78]Sun K,Chen J,2013.Ecological effect of typical flood and drought process on lake wetlands[J].Journal of Yangtze River scientific research institute,30(5):5.

[79]Sun Z,Huang Q,Jiang J,et al.,2015.Recent hydrological droughts in Dongting Lake and its association with the operation of Three Gorges Reservoir[J].Resources and environment in the Yangtze Basin,24(2):251-256.

[80]Sun Z D,Groll M,Opp C,2018.Lake-catchment interactions and their responses to hydrological extremes[J].Quaternary international,475:1-3.

[81]Tan Z,John M,Li Y,et al.,2020.Estimation of water volume in ungauged,dynamic floodplain lakes[J].Environmental research letters,15(5):054021.

[82]Tan Z,Li Y,Xu X,et al.,2019.Mapping inundation dynamics in a heterogeneous floodplain:insights from integrating observations and modeling approach[J].Journal of hydrology,572:148-159.

[83]Tian R,et al.,2014.Analysis of the difference and genetic in drought degree of Honghu Lake and Liangzi Lake in 2011[J].Journal of Geo-Information Science,16(4):653-663.

[84]Ung P,et al.,2019.Dynamics of bacterial community in Tonle Sap Lake,a large tropical flood-pulse system in Southeast Asia[J].Science of the total environment,664:414-423.

[85]Vandervalk A G,Squires L,Welling C H,1994.Assessing the impacts of an increase in water-level on wetland vegetation[J].Ecological applications,4(3):525-534.

[86]Verbeeck H,Samson R,Verdonck F,et al.,2006.Parameter sensitivity and uncertainty of the forest carbon flux model FORUG:a Monte Carlo analysis[J].Tree physiology,26(6):807-817.

[87]Vicente-Serrano S M,Gouveia C,Camarero J J,et al.,2013.Response of vegetation to drought time-scales across global land biomes[J].Proceedings of the national academy of sciences of the United States of America,110(1):52-57.

[88] Vretare V,Weisner S E B,Strand J A,et al.,2001.Phenotypic plasticity in Phragmites australisas a functional response to water depth[J].Aquatic botany,69(2-4):127-146.

[89] Wagner I,Zalewski M,2000.Effect of hydrobiologieal patterns of tributaries on processes in lowland reservoir consequences for restoration [J].Ecological engineering,16:79-90.

[90] Watt S C L,García-Berthou E,Vilar L,2007.The influence of water level and salinity on plant assemblages of a seasonally flooded Mediterranean wetland[J].Plant ecology,189(1):71-85.

[91]Woolway R I,Kraemer B M ,Lenters J D,et al.,2020.Global lake responses to climate change[J].Nature reviews earth&environment,1(8):388-403.

[92]Wu S,Zhou S,Chen D,et al.,2014.Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta,China[J].Science of the total environment,472:397-406.

[93]Wu Y,Wu Z,Liu X,2020.Dynamic changes of net primary productivity and associated urban growth driving forces in Guangzhou City,China[J].Environmental management,65(6):758-773.

[94]Xu G,Zhang H,Chen B,et al.,2014.Changes in vegetation growth dynamics and relations with climate over China's Landmass from 1982 to 2011[J].Remote sensing,6:3263-3283.

[95]Xu X,Zhang Q,Tan Z,et al.,2015.Effects of water-table depth and soil moisture on plant biomass,diversity,and distribution at a seasonally flooded wetland of Poyang Lake,China[J].Chinese geographical science,25(6):739-756.

[96]Xu Z,Dong Q,Costa V,et al.,2019.A hierarchical Bayesian model for decomposing the impacts of human activities and climate change on water resources in China[J].Science of the total environment,665:836-847.

[97]Yao J,Zhang Q,Li Y L,et al.,2016.Hydrological evidence and causes of seasonal low water levels in a large river-lake system:Poyang Lake,China[J].Hydrology research,47:24-39.

[98]Yu J B,Wang X H,Ning K,et al.,2012.Effects of salinity and water depth on germination of Phragmites australis in coastal wetland of the Yellow River delta[J].Clean-soil air water,40(10):1154-1158.

[99]Yu K,Hu C,2013.Changes in vegetative coverage of the Hongze Lake national wetland nature reserve:a decade-long assessment using MODIS medium-resolution data[J].Journal of applied remote sensing,7:302-313.

[100]Zhang B,Schwartz F W,Liu G,2009.Systematics in the size structure of prairie pothole lakes through drought and deluge[J].Water resources research,45:12.

[101]Zhang D,Chen P,Zhang Q,et al.,2017.Copula-based probability of concurrent hydrological drought in the Poyang lake-catchment-river system (China)from 1960 to 2013[J].Journal of hydrology,553:773-784.

[102]Zhang G,et al.,2017.Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin[J].Geophysical research letters,44(11):5550-5560.

[103]Zhang K,et al.,2018.The response of zooplankton communities to the 2016 extreme hydrological cycle in floodplain lakes connected to the Yangtze River in China[J].Environmental science and pollution research,25(23):23286-23293.

[104]Zhang Q,et al.,2014.An investigation of enhanced recessions in Poyang Lake:comparison of Yangtze River and local catchment impacts[J].Journal of hydrology,517:425-434.

[105]Zhang X K,Liu X Q,Yang Z D,et al.,2019.Restoration of aquatic plants after extreme flooding and drought:a case study from Poyang Lake National Nature Reserve[J].Applied ecology and environmental research,17(6):15657-15668.

[106]Zhu J G,Deng J C,Zhang Y H,et al.,2019.Response of submerged aquatic vegetation to water depth in a large shallow lake after an extreme rainfall event[J].Water,11(11):2412.

[107]Zola R P,Bengtsson L,2006.Long-term and extreme water level variations of the shallow Lake Poopo,Bolivia[J].Hydrological sciences journal-journal des sciences hydrologiques,51(1):98-114.

[108]边多,等,2006.近30年来西藏那曲地区湖泊变化对气候波动的响应[J].地理学报,061(005):510-518.

[109]曹明奎,于贵瑞,刘纪远,等,2004.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟[J].中国科学D辑:地球科学,34(S2):1 -14.

[110]陈敏建,王立群,丰华丽,等,2008.湿地生态水文结构理论与分析[J].生态学报,28(6):2887-2893.

[111]陈亚松,2020.水淹时长和水下光强对鄱阳湖湿地植物功能性状和生物量的影响[D].南昌大学.

[112]程时长,卢兵,2003.鄱阳湖湖流特征[J].江西水利科技,29(2):105-108.

[113]崔保山,杨志峰,2006.湿地学[M].北京:北京师范大学出版社.

[114]崔奕波,李钟杰,2005.长江流域湖泊的渔业资源与环境保护[M].北京:科学出版社.

[115]戴雪,2015.鄱阳湖水位波动变化及其对洲滩湿地典型植被景观带空间分布的影响[D].北京:中国科学院大学.

[116]邓伟,胡金明,2003.湿地水文学研究进展及科学前沿问题[J].湿地科学,1(1):12 -20.

[117]董丹,倪健,2011.利用CASA模型模拟西南喀斯特植被净第一性生产力[J].生态学报,31(7):1855-1866.

[118]杜飞,2018.鄱阳湖湿地生态景观对低枯水位响应特征研究[D].北京:中国水利水电科学研究院.

[119]方精云,柯金虎,唐志尧,等,2001.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报,25(4):414 -419.

[120]冯文娟,2020.水文情势对湖泊湿地植物—土壤系统的影响研究[D].北京:中国科学院大学.

[121]冯文娟,徐力刚,王晓龙,等,2018.鄱阳湖湿地植物灰化薹草对不同地下水位的生理生态响应[J].湖泊科学,30(3):763 -769.

[122]葛刚,赵安娜,钟义勇,等,2011.鄱阳湖洲滩优势植物种群的分布格局[J].湿地科学,9(1):19 -25.

[123]郭华,张奇,王艳君,2012.鄱阳湖流域水文变化特征成因及旱涝规律[J].地理学报,67(5):699-709.

[124]贺金生,王政权,方精云,2004.全球变化下的地下生态学:问题与展望[J].科学通报,49(13):1226-1233.

[125]洪长桥,金晓斌,陈昌春,等,2017.集成遥感数据的陆地净初级生产力估算模型研究综述[J].地理科学进展,36(8):924 -939.

[126]胡豆豆,欧阳克蕙,戴征煌,等,2013.鄱阳湖湿地灰化苔草草甸群落特征及多样性[J].草业科学,30(6):844 -848.

[127]胡振鹏,2009.调节鄱阳湖枯水位维护江湖健康[J].江西水利科技,35(2):82 -86.

[128]胡振鹏,葛刚,刘成林,等,2010.鄱阳湖湿地植物生态系统及湖水位对其影响研究[J].长江流域资源与环境,19(6):597 -605.

[129]黄国勤,2010.鄱阳湖生态环境保护与资源开发利用研究[M].北京:中国环境科学出版社.

[130]黄金国,郭志永,2007.鄱阳湖湿地生物多样性及其保护对策[J].水土保持研究,14(1):305-307.

[131]黄奕龙,傅伯杰,陈利顶,2003.生态水文过程研究进展[J].生态学报,23(3):580 -587.

[132]江西省水利厅,2009.江西河湖大典[M].武汉:长江出版社:418-429.

[133]揭二龙,李小军,刘士余,2007.鄱阳湖湿地动态变化及其成因分析[J].江西农业大学学报,29(3):500 -503.

[134]匡燕鹉,马忠红,2019.2017年洞庭湖特大洪水分析[J].水文,39(3):92-96.

[135]赖锡军,姜加虎,黄群,2008.洞庭湖地区水系水动力耦合数值模型[J].海洋与湖沼,39(1):74 -81.

[136]赖锡军,姜加虎,黄群,等,2011.鄱阳湖二维水动力和水质耦合数值模拟[J].湖泊科学,06:93-902.

[137]李景保,等,2011.洞庭湖区农业水旱灾害演变特征及影响因素——60年来的灾情诊断[J].自然灾害学报,20(2):74 -81.

[138]李群,等,2020.甘肃小苏干湖盐沼湿地盐地风毛菊叶形态—光合生理特征对淹水的响应[J].植物生态学报,43(8):685 -696.

[139]李胜男,王根绪,邓伟,2008.湿地景观格局与水文过程研究进展[J].生态学杂志,27(6):1012-1020.

[140]李文,王鑫,潘艺雯,等,2018.不同水淹深度对鄱阳湖洲滩湿地植物生长及营养繁殖的影响[J].生态学报,38(9):3014 -3021.

[141]李旭,谢永宏,黄继山,等,2009.湿地植被格局成因研究进展[J].湿地科学,7(3):280-288.

[142]李云良,张奇,李淼,等,2015.基于BP神经网络的鄱阳湖水位模拟[J].长江流域资源与环境,24(2):233 -240.

[143]刘红玉,吕宪国,张世奎,2003.湿地景观变化过程与累积环境效应研究进展[J].地理科学进展,22(1):60 -70.

[144]刘青,鄢帮有,葛刚,等,2012.鄱阳湖湿地生态修复理论与实践[M].北京:科学出版社.

[145]刘信中,叶居新,2000.江西湿地[M].北京:中国林业出版社.

[146]刘旭颖,关燕宁,郭杉,等,2016.基于时间序列谐波分析的鄱阳湖湿地植被分布与水位变化响应[J].湖泊科学,28(1):195 -206.

[147]刘元波,赵晓松,吴桂平,2014.近十年鄱阳湖区极端干旱事件频发现象成因初析[J].长江流域资源与环境,23(1):131 -138.

[148]龙慧灵,李晓兵,王宏,等,2010.内蒙古草原区植被净初级生产力及其与气候的关系[J].生态学报,30(5):1367 -1378.

[149]马荣华,杨桂山,段洪涛,等,2011.中国湖泊的数量、面积与空间分布[J].中国科学:地球科学,41(3):394 -401.

[150]孟元可,叶许春,徐力刚,等,2018.2000—2015年鄱阳湖区植被净初级生产力变化及驱动因素[J].湿地科学,16(3):360 -369.

[151]闵骞,2002.20世纪90年代鄱阳湖洪水特征的分析[J].湖泊科学,14(4):323 330.

[152]闵骞,闵聃,2010.鄱阳湖区干旱演变特征与水文防旱对策[J].水文,30(1):88 -92.

[153]欧朝敏,尹辉,张磊,2011.洞庭湖区不同情景下农业水旱灾害风险损失评估[J].农业现代化研究,32(6):691 -694.

[154]潘方杰,王宏志,王璐瑶,2018.湖北省湖库洪水调蓄能力及其空间分异特征[J].长江流域资源与环境,27(8):1891 -1900.

[155]朴世龙,张新平,陈安平,等,2019.极端气候事件对陆地生态系统碳循环的影响[J].中国科学:地球科学,49(9):1321 -1334.

[156]齐贵增,白红英,赵婷,等,2021.秦岭陕西段南北坡植被对干湿变化响应敏感性及空间差异[J].地理学报,76(1):44 -56.

[157]秦伯强,等,2013.湖泊富营养化及其生态系统响应[J].科学通报,058(10):855 864.

[158]饶恩明,肖燚,欧阳志云,2014.中国湖库洪水调蓄功能评价[J].自然资源学报,29(8):1356 -1365.

[159]史林鹭,贾亦飞,左奥杰,等,2018.基于MODIS EVI时间序列的鄱阳湖湿地植被覆盖和生产力的动态变化[J].生物多样性,26(8):828 -837.

[160]孙占东,黄群,姜加虎,等,2015.洞庭湖近年干旱与三峡蓄水影响分析[J].长江流域资源与环境,24(2):251 -256.

[161]谭志强,李云良,张奇,等,2022.湖泊湿地水文过程研究进展[J].湖泊科学,34(1):18 -37.

[162]田迅,卜兆军,杨允菲,等,2004.松嫩平原湿地植被对生境干湿交替的响应[J].湿地科学,2(2):122 -127.

[163]王鹏,赖格英,黄小兰,2014.鄱阳湖水利枢纽工程对湖泊水位变化影响的模拟[J].湖泊科学,26(1):29 -36.

[164]王青,严登华,秦天玲,等,2013.人类活动对白洋淀干旱的影响[J].湿地科学,2013,11(4):475 -481.

[165]王苏民,窦鸿身,1998.中国湖泊志[M].北京:科学出版社.

[166]王晓鸿,2005.鄱阳湖湿地生态系统评估[M].北京:科学出版社.

[167]王鑫,李文,郝莹莹,等,2019.土壤湿度对鄱阳湖湿地植物芽库萌发和生长的影响[J].南昌大学学报(理科版),43(3):274 -279.

[168]沃笑,吴良才,2014.基于CASA模型的三江源地区植被净初级生产力遥感估算研究[J].干旱区资源与环境,28(9):45 -50.

[169]吴桂平,叶春,刘元波,2015.鄱阳湖自然保护区湿地植被生物量空间分布规律[J].生态学报,35(2):361 -369.

[170]吴建东,刘观华,金杰峰,等,2010.鄱阳湖秋季洲滩植物种类结构分析[J].江西科学,28(4):549 -554.

[171]吴琴,尧波,朱丽丽,等,2012.鄱阳湖典型苔草湿地生物量季节变化及固碳功能评价[J].长江流域资源与环境,21(2):215 -219.

[172]谢冬明,郑鹏,邓红兵,等,2011.鄱阳湖湿地水位变化的景观响应[J].生态学报,31(5):1269 -1276.

[173]徐德龙,熊明,张晶,2001.鄱阳湖水文特性分析[J].人民长江,32(2):21 -27.

[174]徐治国,何岩,闫百兴,等,2006.营养物及水位变化对湿地植物的影响[J].生态学杂志,25(1):87 -92.

[175]许秀丽,张奇,李云良,等,2014.鄱阳湖洲滩芦苇种群特征及其与淹水深度和地下水埋深的关系[J].湿地科学,6:714 -722.

[176]薛晨阳,李相虎,谭志强,等,2022.鄱阳湖典型洲滩湿地植物群落稳定性及其与物种多样性的关系[J].生态科学,41(2):1 -10.

[177]杨元合,石岳,孙文娟,等,2022.中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J].中国科学:生命科学,52(4):534 -574.

[178]姚静,李云良,李梦凡,等,2017.地形变化对鄱阳湖枯水的影响[J].湖泊科学,29(4):955 -964.

[179]姚檀栋,2010.青藏高原南部冰川变化及其对湖泊的影响[J].科学通报,55(18):1749.

[180]叶春,刘元波,赵晓松,等,2013.基于MODIS的鄱阳湖湿地植被变化及其对水位的响应研究[J].长江流域资源与环境,22(2):705 -712.

[181]叶春,吴桂平,赵晓松,等,2014.鄱阳湖国家级自然保护区湿地植被的干旱响应及影响因素[J].湖泊科学,26(2):253 -259.

[182]叶许春,李相虎,张奇,2012.长江倒灌鄱阳湖的时序变化特征及其影响因素[J].西南大学学报(自然科学版),34(11):69 -75.

[183]叶正伟,2006.淮河洪泽湖洪涝灾害特征与成灾本底机理分析[J].水土保持研究(4):94 -96+277.

[184]尹志杰,王容,李磊,等,2019.长江流域“2017·07”暴雨洪水分析[J].水文,39(2):88 -93.

[185]游海林,徐力刚,姜加虎,等,2013.鄱阳湖典型洲滩湿地植物根系生长对极端水情变化的响应[J].生态学杂志,32(12):3125 -3130.

[186]余莉,何隆华,张奇,等,2011.三峡工程蓄水运行对鄱阳湖典型湿地植被的影响[J].地理研究,30(1):134 -144.

[187]余新晓,牛键植,关文斌,等,2006.景观生态学[M].北京:高等教育出版社.

[188]张方方,齐述华,廖富强,等,2011.鄱阳湖湿地出露草洲分布特征的遥感研究[J].长江流域资源与环境,20(11):1361 -1367.

[189]张丽丽,殷峻暹,蒋云钟,等,2012.鄱阳湖自然保护区湿地植被群落与水文情势关系[J].水科学进展,23(6):768 -774.

[190]张利平,杜鸿,夏军,等,2011.气候变化下极端水文事件的研究进展[J].地理科学进展,30(11):1370-1379.

[191]张奇,2018.鄱阳湖水文情势变化研究[M].北京:科学出版社.

[192]张奇,刘元波,姚静,等,2020.我国湖泊水文学研究进展与展望[J].湖泊科学,32(5):1360-1379.

[193]张婷,周军志,李建柱,等,2022.陆地生态系统碳水通量特征研究进展[J].地球环境学报,13(6):645 -666.

[194]章光新,尹雄锐,冯夏清,2008.湿地水文研究的若干热点问题[J].湿地科学,6(2):105-115.

[195]赵国帅,王军邦,范文义,等,2011.2000—2008年中国东北地区植被净初级生产力的模拟及季节变化[J].应用生态学报,22(3):621 -630.

[196]赵化雄,2003.洞庭湖区旱涝特征浅析[J].灾害学,18(1):87-91.

[197]周文斌,万金保,姜加虎,2011.鄱阳湖江湖水位变化对其生态系统影响[M].北京:科学出版社.

[198]周云凯,白秀玲,宁立新,2017.鄱阳湖湿地灰化苔草固碳能力及固碳量研究[J].生态环境学报,26(12):2030 -2035.

[199]周云凯,白秀玲,宁立新,2018.鄱阳湖湿地灰化苔草种群生产力特征及其水文响应[J].生态学报,38(14):4953 -4963.

[200]朱海虹,张本,1997.中国湖泊系列研究之五:鄱阳湖水文·生物·沉积·湿地·开发整治[M].合肥:中国科学技术大学出版社.

[201]朱宏富,金锋,李荣昉,2002.鄱阳湖调蓄功能与防灾综合治理研究[M].北京:气象出版社. 6L+KrKJF8ABbFzC7JkEAfV5HDlEn2gDUz3BPRgr/wzA7pysqmBnEdLkea7ml+YqK

点击中间区域
呼出菜单
上一章
目录
下一章
×