购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1]KHODABANDEH M, AFSHARI E, AMIRABADI M. A family of Cuk, Zeta, and SEPIC based soft-switching DC-DC converters[J]. IEEE Transactions on Power Electronics, 2019, 34 (10):9503-9519.

[2]ZHAI L, LIN L, ZHANG X, et al. The effect of distributed parameters on conducted EMI from DC-Fed motor drive systems in electric vehicles[J]. Energies, 2017, 10(1):1-17.

[3]IEC. Vehicles, boats and internal combustion engines: Radio disturbance characteristics—Limits and methods of measurement for the protection of off-board receivers: CISPR 12(Ed6.1):2009 [S]. Geneva, Switzerland: IEC, 2009.

[4]TOURE B, SCHANEN J L, GERBAUD L, et al. EMC modeling of drives for aircraft applica-tions: Modeling process, EMI filter optimization, and technological choice[J]. IEEE Transac-tions on Power Electronics, 2013, 28(3):1145-1156.

[5]BISHNOI H, BAISDEN A C, MATTAVELLI P, et al. Analysis of EMI Terminal Modeling of Switched Power Converters[J]. IEEE Transactions on Power Electronics, 2013, 27(9):3924-3933.

[6]刘尚和,刘卫东.电磁兼容与电磁防护相关研究进展[J].高电压技术,2014,40(6):1605-1613.

[7]ZHU H, LAI J, HEFNER A R, et al. Modeling-Based Examination of Conducted EMI Emis-sions From Hard-and Soft-Switching PWM Inverters[J]. IEEE Transactions on Industry Applica-tions, 2001, 37(5):1383-1393.

[8]FENG Q, LIAO C, XIONG X. A Novel Measurement System for the Common-mode-and Dif-ferential-mode-conducted Electromagnetic Interference[J]. Progress In Electromagnetics Research Letters, 2014, 48:75-81.

[9]翟丽,张新宇,李广召.电动汽车电机逆变器系统分布参数对传导电磁干扰影响研究[J].北京理工大学学报,2016,36(9):935-939.

[10]陈名,孙旭东,黄立培.三相逆变器共模传导电磁干扰的建模与分析[J].电工电能新技术,2012,31(1):18-21.

[11]汪泉弟,张飞,彭河蒙,等.基于向量拟合法的永磁同步电机EMI高频模型[J].电工技术学报,2015,30(6):77-84.

[12]JETTANASEN C, NGAOPITAKKUL A. Minimization of Common-Mode Conducted Noise in PWM Inverter-fed AC Motor Drive Systems using Optimized Passive EMI Filter[J]. Lecture Notes in Engineering and Computer Science, 2010, 2181(1):450-460.

[13]REVOL B, ROUDET J, SCHANEN J L, et al. EMI Study of Three-Phase Inverter-Fed Motor Drives[J]. IEEE Transactions on Industry Applications, 2011, 47(1):223-231.

[14]LAI J S, HUANG X, CHEN S, et al. EMI Characterization and Simulation With Parasitic Models for a Low-Voltage High-Current AC Motor Drive[J]. IEEE Transactions on Industry Ap-plications, 2004, 40(1):178-185.

[15]BONDARENKO N, ZHAI L, XU B, et al. A measurement-based model of the electromagnetic emissions from a power inverter[J]. IEEE Transactions on Power Electronics, 2015, 30(10):5522-5531.

[16]BISHNOI H, MATTAVELLI P, BURGOS R, et al. EMI Behavioral Models of DC-Fed Three-Phase Motor Drive Systems[J]. IEEE Transactions on Power Electronics, 2014, 29(9):4633-4645.

[17]WITTING T, SCHUHMANN R, WEILAND T. Model order reduction for large systems in computational electromagnetics[J]. Linear Algebra Applications, 2006, 415(2-3):499-530.

[18]TOURE B, SCHANEN J L, GERBAUD L, et al. EMC modeling of drives for aircraft appli-cations: Modeling process, EMI filter optimization, and technological choice[J]. IEEE Transac-tions on Power Electronics, 2013, 28(3):1145-1156.

[19]ARDON V, AIME J, CHADEBEC O, et al. EMC modeling of an industrial variable speed drive with an adapted PEEC method[J]. IEEE Transactions on Magnetics, 2010, 46(8):2892-2898.

[20]WANG S, MAILLET Y Y, WANG F, et al. Parasitic Effects of Grounding Paths on Common-Mode EMI Filter's Performance in Power Electronics Systems[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9):3050-3059.

[21]AKAGI H, SHIMIZU T. Attenuation of Conducted EMI Emissions From an Inverter-Driven Motor[J]. IEEE Transactions on Power Electronics, 2008, 23(1):282-290.

[22]BISHNOI H, BAISDEN A C, MATTAVELLI P, et al. Analysis of EMI terminal modeling of switched power converters[J]. IEEE Transactions on power electronics, 2012, 27(9):3924-3933.

[23]GONG X, FERREIRA A. Comparison and reduction of conducted EMI in SiC JFET and Si IGBT-based motor drives[J]. IEEE Transactions on power electronics, 2014, 29(4):1757-1767.

[24]YANG G, DUBUS P, SADARNAC D. Double-Phase High-Efficiency, Wide Load Range High-Voltage/Low-Voltage LLC DC/DC Converter for Electric/Hybrid Vehicles[J]. IEEE Transactions on Power Electronics, 2015, 30(4):1876-1886.

[25]HAN D, SARLIOGLU B. Comprehensive study of the performance of SiC MOSFET-based au-tomotive DC-DC converter under the influence of parasitic inductance[J]. IEEE Transactions on Industry Applications, 2016, 52(6):5100-5111.

[26]HEGAZY O, MIERLO J V, LATAIRE P. Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles[J]. IEEE Transactions on Power Electronics, 2012, 27(11):4445-4458.

[27]SAFAEE A, JAI P K, BAKHSHAI A. An adaptive ZVS full-bridge DC-DC converter with reduced conduction losses and frequency variation range[J]. IEEE Transactions on Power Electronics, 2015, 30(8):4107-4118.

[28]HASAN S U, GRAHAM E T. An aperiodic modulation method to mitigate electromagnetic in-terference in impedance source DC-DC Converters[J]. IEEE Transactions on Power Electronics, 2018, 33(9):7601-7608.

[29]ALES A, SCHANEN J L, MOUSSAOUI D, et al. Impedances Identification of DC/DC Converters for Network EMC Analysis[J]. IEEE Transactions on Power Electronics, 2014, 29 (12):6445-6457.

[30]ALI M, LABOURÉ E, COSTA F, et al. Design of a Hybrid Integrated EMC Filter for a DC-DC Power Converter[J]. IEEE Transactions on Power Electronics, 2012, 27(11):4380-4390.

[31]GROBLER1 I, GITAU M N. Analysis, modelling and measurement of the effects of aluminium and polymer heatsinks on conducted electromagnetic compatibility in DC-DC converters[J]. IET Science, Measurement&Technology, 2017, 10(4):1449-1461.

[32]GROBLER1 I, GITAU M N. Modelling and measurement of highfrequency conducted electromagnetic interference in DC-DC converters[J]. IET Science, Measurement&Technology, 2017, 11(4):495-503.

[33]ZHAI L, ZHANG T, CAO Y, et al. Conducted EMI prediction and mitigation strategy based on transfer function for a high-low voltage DC-DC converter in electric vehicle[J]. Energies, 2018, 11(5):1028-1044.

[34]AN Z Y, WANG Q D, ZHENG Y L. Conducted EMI Noise Prediction in DC Converter System for Electric Vehicle Application[J]. Applied Mechanics and Materials, 2013(3):325-326.

[35]LAOUR M, TAHMI R, VOLLAIRE C. Modeling and Analysis of Conducted and Radiated Emissions Due to Common Mode Current of a Buck Converter[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4):1260-1267.

[36]WANG Q, AN Z, ZHENG Y, et al. Parameter extraction of conducted electromagnetic interference prediction model and optimization design for a DC-DC converter system[J]. IET Power Electronics, 2013, 6(7):1449-1461.

[37]PAHLEVANINEZHAD M, HAMZA D, JAIN P K. An improved layout strategy for common-mode EMI suppression applicable to high-frequency planar transformers in high-power DC/DC converters used for electric vehicles[J]. IEEE Transactions on Power Electronics, 2014, 29(39):1211-1228.

[38]HAN D, SARLIOGLU B. Comprehensive Study of the Performance of SiC MOSFETs Based Automotive DC-DC Converter under the Influence of Parasitic Inductance[J]. IEEE Transactions on Industrial Informations, 2016, 52(6):5100-5111.

[39]FERBER M, VOLLAIRE C, KRAHENBUHL L, et al. Conducted EMI of DC-DC Converters With Parametric Uncertainties[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(4):699-706.

[40]KOVACEVIC I F, FRIEDLI T, MUSING A M, et al. 3-D Electromagnetic Modeling of Parasitics and Mutual Coupling in EMI Filters[J]. IEEE Transactions on Power Electronics, 2014, 29(1):135-149.

[41]TAN W, CUELLAR C, MARGUERON X, et al. A High Frequency Equivalent Circuit and Parameter Extraction Procedure for Common Mode Choke in the EMI Filter[J]. IEEE Transactions on Power Electronics, 2013, 28(3):1157-1166.

[42]丁一夫,陈阳,邱振宇.汽车对人体电磁辐射的测试研究[J].安全与电磁兼容,2015(5):31-34.

[43]WANG Q, LI W, KANG J, et al. Electromagnetic Safety Evaluation and Protection Methods for a Wireless Charging System in an Electric Vehicle[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6):1913-1925.

[44]CHEN W, LIU C, LEE C, et al. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging [J]. Energies, 2016, 9(11):906-918.

[45]CHO Y, LEE S, KIM D H, et al. Thin Hybrid Met material Slab With Negative and Zero Permeability for High Efficiency and Low Electromagnetic Field in Wireless Power Transfer Systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 60:1-9.

[46]ESTEBAN B, SID A. A Comparative Study of Power Supply Architectures in Wireless EV Charging Systems [J]. IEEE Transactions on Power Electronics, 2015, 30(11):6408-6422.

[47]ROZMAN M, FERNANDO M. Combination of Compensations and Multi-Parameter Coil for Efficiency Optimization of Inductive Power Transfer System [J]. Energies, 2017, 10(12):2088-2102.

[48]CHRIST A. Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits [J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(2):265-274.

[49]ZENG H, LIU Z, HOU Y, et al. Optimization of magnetic core structure for WPT coupler [J]. IEEE Transactions on Magnetics, 2017, 53(6):1-1.

[50]TRIVIÑOCABRERA A, LIN Z, AGUADO J A, et al. Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger[J]. Energies, 2018, 11(3):538-548.

[51]LEE W S, KIM J H, CHO S Y, et al. An Improved Wireless Battery Charging System [J]. Energies, 2018, 11(4):791-802.

[52]DE SANTIS V, CAMPI T, CRUCIANI S, et al. Assessment of the induced electric fields in a carbon-fiber electrical vehicle equipped with a wireless power transfer system[J]. Energies, 2018, 11(3):684-693.

[53]HWANG K, CHO J, KIM D, et al. An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment [J]. Energies, 2017, 10(3):315-334.

[54]DAI X, LI Y, et al. A Maximum Power Transfer Tracking Method for Wireless charging systems with Coupling Coefficient Identification Considering Two-Value Problem [J]. Energies, 2017, 10 (3):1665-1677.

[55]MAHMUD M H, ELMAHMOUD W, BARZEGARAN M R, et al. Efficient wireless power charging of electric vehicle by modifying the magnetic characteristics of the transmitting medium[J]. IEEE Transactions on Magnetics, 2017, 53(6):1-5.

[56]MOON H, KIM S, PARK H H, et al. Design of a resonant reactive shield with double coils and a phase shifter for WPT of electric vehicles [J]. IEEE Transactions on Magnetics, 2015, 51(3):1-4.

[57]HUI S Y R, ZHONG W, LEE C K. A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer [J]. IEEE Transactions on Power Electronics, 2014, 29(9):4500-4511.

[58]Kim H, et al. Coil Design and Measurements of Automotive Magnetic Resonant Wireless Charging System for High-Efficiency and Low Magnetic Field Leakage [J]. IEEE Transactions on Microwave Theory and Techniques, 64(2):383-400.

[59]ZHAI L, CAO Y, LIN L, et al. Mitigation Conducted Emission Strategy Based on Transfer Function from a DC-Fed Wireless Charging System for Electric Vehicles[J]. Energies, 2018, 11(3):477-493.

[60]NGUYEN K T, TAKUYA O, SHINICHI T, et al. Attenuate influence of parasitic elements in 13.56MHz inverter for wireless power transfer systems [J]. IEEE Transactions on Power Electron-ics, 33(4):3218-3231.

[61]PUYAL D, BERNAL C, BURDIO J M, et al. Versatile high-frequency inverter module for large-signal inductive loads characterization up to 1.5MHz and 7kW [J]. IEEE Transaction on Power Electronics, 2018, 23(1):75-87.

[62]JIN H K, SEO S H, HAI N T, et al. Gateway Framework for In-Vehicle Networks Based on CAN, FlexRay, and Ethernet[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10):4472-4486.

[63]FERBER M, VOLLAIRE C, KRAHENBUHL L, et al. Conducted EMI of DC-DC Converters With Parametric Uncertainties[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(4):699-706.

[64]CHU X Q, LIN Y J, PAN B H, et al. Fast algorithm based on self-resonant frequency for de-coupling capacitor selection[J]. Electronics Letters, 2013, 49(18):1176-1177.

[65]FAN J, CUI W, DREWNIAK J L, et al. Estimating the noise mitigation effect of local decou-pling in printed circuit boards[J]. IEEE Transactions on Advanced Packaging, 2002, 25(2):154-165.

[66]WU K B, SHIUE G H, WU R B. Optimization for the Locations of Decoupling Capacitors in Suppressing the Ground Bounce by Genetic Algorithm[J]. Piers Online, 2005, 1(4):411-415.

[67]王保坡,杜劲松,田星,等.基于混合遗传算法的去耦电容网络设计[J].电子技术应用,2015,41(7):146-149.

[68]张毅.一种多芯片多输入PDN分布式建模及去耦方法[J].电子科技,2016,29(7):132-135.

[69]秦俊,李伟哲.基于改进目标阻抗的电源分配网络设计方法[J].电子科技,2013,26(5):74-77.

[70]SHEN C K, LU Y C, CHIOU Y P, et al. EBG-based grid-type PDN on interposer for SSN miti-gation in mixed-signal system-in-package[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(12):1053-1055.

[71]PAUL C R. A comparison of the contributions of common-mode and differential-mode currents in radiated emissions[J]. IEEE Transactions on Electromagnetic Compatibility, 1989, 31(2):189-193.

[72]HOCKANSON D M, DREWNIAK J L, HUBING T H, et al. Investigation of fundamental EMI source mechanisms driving common-mode radiation from printed circuit boards with attached cables[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 38(4):557-566.

[73]GUO W D, SHIUE G H, LIN C M, et al. Comparisons between serpentine and flat spiral delay lines on transient reflection/transmission waveforms and eye diagrams[J]. IEEE Transactions on Microwave Theory&Techniques, 2006, 54(4):1379-1387.

[74]SHIUE G H, GUO W D, LIN C M, et al. Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines[J]. IEEE Transactions on Advanced Packag-ing, 2006, 29(3):560-569.

[75]GAZDA C, GINSTE D V, ROGIER H, et al. A Wideband Common-Mode Suppression Filter for Bend Discontinuities in Differential Signaling Using Tightly Coupled Microstrips[J]. IEEE Transactions on Advanced Packaging, 2010, 33(4):969-978.

[76]CHANG C H, FANG R Y, WANG C L. Bended Differential Transmission Line Using Compen-sation Inductance for Common-Mode Noise Suppression[J]. IEEE Transactions on Components Packaging&Manufacturing Technology, 2012, 2(9):1518-1525.

[77]LIU W T, TSAI C H, HAN T W, et al. An Embedded Common-Mode Suppression Filter for GHz Differential Signals Using Periodic Defected Ground Plane[J]. IEEE Microwave&Wireless Components Letters, 2008, 18(4):248-250.

[78]WU S J, TSAi C H, WU T L, et al. A Novel Wideband Common-Mode Suppression Filter for Gigahertz Differential Signals Using Coupled Patterned Ground Structure[J]. IEEE Transactions on Microwave Theory&Techniques, 2009, 57(4):848-855.

[79]NAQUI J, MEMBER S, et al. Common-Mode Suppression in Microstrip Differential Lines by Means of Complementary Split Ring Resonators: Theory and Applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(10):3023-3034.

[80]吴健,孔德升.高速数据采集卡的信号完整性分析[J].仪表技术与传感器,2013(12):93-96.

[81]SONG E, CHO J, KIM J, et al. Modeling and Design Optimization of a Wideband Passive Equalizer on PCB Based on Near-End Crosstalk and Reflections for High-Speed Serial Data Transmission[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(2):410-420.

[82]XU J, WANG S. Investigating a Guard Trace Ring to Suppress the Crosstalk due to a Clock Trace on a Power Electronics DSP Control Board[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(3):546-554.

[83]IIDA M , MAENO T, FUJIWARA O. Effect of Ground Patterns Size on FM-Band Cross-Talks between Two Parallel Signal Traces of Printed Circuit Boards for Vehicles[J]. Electrical Engineering in Japan, 2013, 186(1):11-17.

[84]MIHALI F, KOS D. Reduced Conductive EMI in Switched-Mode DC-DC Power Converters Without EMI Filters: PWM Versus Randomized PWM[J]. Power Electronics, IEEE Transactions on, 2006, 21(6):1783-1794.

[85]DIANBO F, SHUO W, PENGJU K, et al. Novel Techniques to Suppress the Common-Mode EMI Noise Caused by Transformer Parasitic Capacitances in DC-DC Converters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11):4968-4977.

[86]POUIKLIS G, KOTTARAS G, PSOMOULIS A, et al. A CMOS oscillator for radiation-hard-ened, low-power space electronics[J]. International Journal of Electronics, 2013, 100(7):913-927.

[87]BERZOY A, MOHAMED A A S, MOHAMMED O A. Optimizing power converter PCB design for lower EMI[J]. International Journal of Electronics. 2015, 34(5):1364-1380.

[88]FONTANA M, HUBING T H. Characterization of CAN Network Susceptibility to EFT Transient Noise[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(2):188-194.

[89]林程.电动汽车工程手册:纯电动汽车整车设计[M].北京:机械工业出版社,2019.

[90]贡俊.电动汽车工程手册:驱动电机与电力电子[M].北京:机械工业出版社,2019.

[91]黄雪梅,雷剑梅,赖志达,等.30MHz以下电动汽车的辐射发射抑制[J].安全与电磁兼容,2013(4):28-30,47.

[92]高新杰,张洪超,吴俊,等.电动汽车仪表电磁辐射干扰分析[J].安全与电磁兼容,2013(4):24-26,43.

[93]丁一夫,柳海明.电动汽车9~150kHz电场骚扰特性[J].安全与电磁兼容,2013(4):27-29,65.

[94]柳海明,吴艳艳,张广玉,等.电动汽车用动力线缆电气性能及试验方法综述[J].汽车电器,2018(7):10-13. eMze4fFFE5E2IRlsRrXlWrYPc/ILQR5UGaSsHO5Zag2K8Q4dd3VvV2X9mUBwC/DG

点击中间区域
呼出菜单
上一章
目录
下一章
×