购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

1.3 质子导体固体电解质

传统的SOFC的工作温度较高,造成对密封材料、连接体材料的选择异常苛刻,电解质与电极之间的界面化学扩散加剧,双极板材料的稳定性降低,使材料价格昂贵,操作成本过高,电池的寿命减小等,严重影响其商业化发展。因此,SOFC的中低温化是当前商业化发展的趋势。但是,SOFC的中低温化并不能以牺牲燃料电池的性能为代价,发展高性能和低成本的SOFC是研究者们追求的目标。电解质材料是整个SOFC的核心部分,电解质材料的性能不仅直接影响电池的工作温度、输出性能等,还能影响与之匹配的电极材料的设计与制备。因此,要降低SOFC的工作温度,就要开发在中低温下具有高电导率的电解质材料。

目前,在中低温范围内性能较好且广泛研究的有氧离子传导的掺杂ZrO 2 、掺杂CeO 2 、掺杂LaGaO 3 、掺杂Bi 2.3 [51-57,105-110] 和质子传导的钙钛矿结构的掺杂BaCeO 3 和BaZrO 3 、烧绿石型化合物、稀土掺杂的钽酸盐等材料 [1 -23,36 -50]

Sc 2.3 稳定的ZrO 2 (SCSZ)在 750℃时电导率就可达到 0.1 S·cm -1 ,而传统的YSZ在 950℃时才能达到这一电导率,且SCSZ在氧化和还原性气氛中都具有良好的稳定性。但是SCSZ在高温处理后会迅速老化,且Sc的价格昂贵,使得Sc 2.3 稳定的ZrO 2 的发展受到限制。掺杂的CeO 2 体系(DCO)曾被认为是中温电解质材料的首选,因为无论是使用哪一种稀土掺杂元素,DCO在中低温条件下的电导率都要比传统的YSZ电解质高一个数量级。但是DCO材料最大的问题是其在还原性气氛下部分的Ce 4 + 会被还原成Ce 3 + ,使得体系中产生电子电导,引起单电池部分内短路,这不仅会降低电池的开路电压,还会导致燃料能量的额外损失,带来电池功率的损耗。另外,Ce 4 + 还原成Ce 3 + 还会引起晶格膨胀而导致电解质薄膜机械性能及强度变差,大大影响SOFC长期运行的稳定性。自从Ishihara等 [113-115] 发现Sr、Mg共掺杂的LaGaO 3 (LSGM)具有很高的氧离子电导率,LSGM体系就成为氧离子导体电解质材料研究的热点之一。但是,由于Ga的挥发性使得制备纯相的LSGM相对较困难,且在高温煅烧的过程中常会有杂质相的生成,不利于氧离子传导。同时,由于SOFC通常使用的大多是Ni基阳极,而LSGM易于与NiO发生反应生成LaNiO 3 ,使得LSGM与阳极之间要加一个过渡层,这些都制约了Sr、Mg掺杂的LaGaO 3 体系的发展。

而与氧离子传导相比,质子传导更容易,且大多数质子导体具有更低的电子电导率,有利于提高电池输出功率和效率 [116] ;作为质子导体,水是在阴极产生的,这有利于电池机械性能的提高 [117] ;质子传导在临近的 2 个氧原子之间,具有相对较低的活化能 [118,119] ,在相对较低的温度下就可以完成质子的产生和氧化反应,极大地降低SOFC的工作温度,减少热损失,降低对其他元件及材料的要求,并可拓宽密封连接材料的选择范围,降低电池成本 [120] ;导体质子化程度可随着温度降低而升高,这有利于质子电导和电池性能提高 [121] 。所有这些使得质子导体材料有望成为中低温SOFC的电解质材料而备受关注。

由于固体氧化物质子导体基电解质具有广阔的应用前景和巨大的发展空间,且作为中低温SOFC的重要组成部分,它必须具有较高的质子电导率和质子迁移数来保证H-SOFC高效率的运行,同时还需具有较高的机械强度与化学相容性,除此之外,还需要有一定的化学稳定性来保证电池的长时间运行,各国研究者对中低温质子导体从制备方法、物化性质、质子导电机理和工业应用等方面进行了广泛的研究,以期发现和优选一些新型、性能稳定、电导率高的质子导体电解质材料,为这类材料在燃料电池、气体传感器等电化学装置的应用提供重要依据。

参考文献

[1]A.Radojkovic,S.M.Savic,N.Jovic,et al.Structural and electrical properties of BaCe 0.9 Ee 0.1 O 2.95 electrolyte for IT-SOFCs[J]. Electrochimica Acta,2015,161:153-158.

[2] J.M.Andújar,F.Segura.Fuel cells:History and updating.A walk along two centuries[J]. Renewable and Sustainable Energy Reviews,2009,13(9):2309-2322.

[3] A.Lacz,K.Grzesik,P.Pasierb.Electrical properties of BaCeO 3 -based composite protonic conductors[J]. Journal of Power Sources,2015,279:80-87.

[4]Y.Tsai,S.Chen,J.Wang,et al.Chemical stability and electrical conductivity of BaCe 0.4 Zr 0.4 Gd 0.1 Dy 0.1 O 3- δ perovskite [J]. Ceramics International,2015,41:10856-10860.

[5 ] D.Konwar,N.T.Q.Nguyen,H.H.Yoon.Evaluation of BaZr 0.1 Ce 0.7 Y 0.2 O 3-α electrolyte prepared by carbonate precipitation for a mixed ion-conducting SOFC[J]. International Journal of Hydrogen Energy,2015,40:11651-11658.

[6]D.Medvedev,J.Lyagaeva,S.Plaksin,et al.Sulfur and carbon tolerance of BaCeO 3 -BaZrO 3 proton-conducting materials [J]. Journal of Power Sources,2015,273:716-723.

[7]J.Lagaeva,D.Medvedev,A.Demin,et al.Insights on thermal and transport features of BaCe 0.8- x Zr x Y 0.2.3- δ proton-conducting materials[J]. Journal of Power Sources,2015,278:436-444.

[8]F.Su,C.Xia,R.Peng.Novel fluoride-doped barium cerate applied as stable electrolyte in proton conducting solid oxide fuel cells[J]. Journal of the European Ceramic Society,2015,35:3553-3558.

[9]J.Bu,P.G.Jönsson,Z.Zhao.Dense and translucent BaZr x Ce 0.8- x Y 0.2.3- δ x = 0.5,0.6,0.7) proton conductors prepared by spark plasma sintering [J].Scripta Materialia,2015,107:145-148.

[10]P.Kim-Lohsoontorn,C.Paichitra,S.Vorathamthongdee.Low-temperature preparation of BaCeO 3 through ultrasonic-assisted precipitation for application in solid oxide electrolysis cell [J ]. Chemical Engineering Journal,2015,278:13-18.

[11]C.Zhang,H.Zhao,N.Xu,et al.Influence of ZnO addition on the properties of high temperature proton conductor Ba 1.03 Ce 0.5 Zr 0.4 Y 0.1 O 3- δ synthesized via citrate-nitrate method [J]. International Journal of Hydrogen Energy,2009,34:2739-2746.

[12] B.Lin,Y.Dong,S.Wang,et al.Stable,easily sintered BaCe 0.5 Zr 0.3 Y 0.16 Zn 0.04 O 3- δ electrolyte-based proton-conducting solid oxide fuel cells by gel-casting and suspension spray [J]. Journal of Alloys and Compounds,2009,478:590-593.

[13] Z.Zhong.Stability and conductivity study of the BaCe 0.9- x Zr x Y 0.1 O 2.95 systems[J]. Solid State Ionics,2009,178:213-220.

[14] N.Taniguchi,C.Nishimura,J.Kato.Endurance against moisture for protonic conductors of perovskite-type ceramics and preparation of practical conductors[J]. Solid State Ionics,2001,145:349-355.

[15]S.Wienstrijer,H-D.Wiemhijfer.Investigation of the influence of zirconium substitution on the properties of neodymium-doped barium cerates[J]. Solid State Ionics,1997,101-103:1113-1117

[16]A.K.Azad,J.T.S.Irvine.High density and low temperature sintered proton conductor BaCe 0.5 Zr 0.35 Sc 0.1 Zn 0.05 O 3- δ [J]. Solid State Ionics,2008,179:678-682.

[17] K.Xie,R.Yan,X.Xu,et al.A stable and thin BaCe 0.7 Nb 0.1 Gd 0.2 O 3- δ membrane prepared by simple all-solid-state process for SOFC[J]. Journal of Power Sources,2009,187:403-406.

[18] A.K.Azad,J.T.S.Irvine.Synthesis,chemical stability and proton conductivity of the perovksites Ba (Ce,Zr) 1- x Sc x O 3- δ [J]. Solid State Ionics,2007,178:635-640.

[19] S.Zhang,L.Bi,L.Zhang,et al.Stable BaCe 0.5 Zr 0.3 Y 0.16 Zn 0.04 O 3- δ thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells[J]. Journal of Power Sources,2009,188:343-346.

[20]R.Yan,Q.Wang,G.Chen,et al.A cubic BaCo 0.8 Nb 0.1 Fe 0.1 O 3- δ ceramic cathode for solid oxide fuel cell[J]. Journal of Alloys and Compounds,2009,488:L35-L37.

[21]L.Zhao,B.He,Z.Xun,et al.Characterization and evaluation of NdBaCo 2 O 5 + δ cathode for proton-conducting solid oxide fuel cells[J]. International Journal of Hydrogen Energy 2010,35:753-756.

[22]R.Glockner,M.S.Islam,T.Norby.Protons and other defects in BaCeO 3 :a computational study[J]. Solid State Ionics,1999,122:145-156.

[23]J.Xu,X.Lu,Y.Ding,et al.Stable BaCe 0.5 Zr 0.3 Y 0.16 Zn 0.04 O 3- δ electrolyte-based proton-conducting solid oxide fuel cells with layered SmBa 0.5 Sr 0.5 Co 2.5 + δ cathode[J]. Journal of Alloys and Compounds,2009,488:208-210.

[24]H.Ding ,X.Xue.Novel layered perovskite GdBaCoFeO 5 + δ as a potential cathode for proton-conducting solid oxide fuel cells[J]. International Journal of Hydrogen Energy 2010,35:4311-4315.

[25]B.Lin,M.Hu,J.Ma,et al.Stable,easily sintered BaCe 0.5 Zr 0.3 Y 0.16 Zn 0.04 O 3- δ electrolyte-based protonic ceramic membrane fuel cells with Ba 0.5 Sr 0.5 Zn 0.2 Fe 0.8 O 3- δ perovskite cathode[J]. Journal of Power Sources,2008,183:479-484.

[26]W.Xing,P.I.Dahl,L.V.Roaas,Marie-Laure Fontaine,Yngve Larring,Partow P.Henriksen,Rune Bredesen.Hydrogen permeability of SrCe 0.7 Zr 0.25 Ln 0.05 O 3- δ membranes (Ln = Tm and Yb)[J]. Journal of Membrane Science,2015,473:327-332.

[27]T.Shimada,C.Wen,N.Taniguchi,et al.The high temperature proton conductor BaZr 0.4 Ce 0.4 In 0.2.3- α [J]. Journal of Power Sources,2004,131:289-292.

[28]Y.Guo,Y.Lin,R.Ran,et al.Zirconium doping effect on the performance of proton-conducting BaZr y Ce 0.8 y Y 0 . 2O 3- δ (0.0≤ y ≤0.8) for fuel cell applications[J]. Journal of Power Sources,2009,193:400-407.

[29] N.Zakowsky,S.Williamson,J.T.S.Irvine.Elaboration of CO 2 tolerance limits of BaCe 0.9 Y 0.1 O 3- δ electrolytes for fuel cells and other applications[J]. Solid State Ionics,2005,176:3019-3026.

[30]W.Sun,Z.Shi,S.Fang,et al.A high performance BaZr 0.1 Ce 0.7 Y 0.2 O 3- δ -based solid oxide fuel cell with a cobalt-free Ba 0.5 Sr 0.5 FeO 3- δ Ce 0.8 Sm 0.2 O 2- δ composite cathode [J]. International Journal of Hydrogen Energy 2009,35:7925-7929.

[31]H.Ding,X.Xue.Proton conducting solid oxide fuel cells with layered PrBa 0.5 Sr 0.5 Co 2.5 + δ perovskite cathode[J]. International Journal of Hydrogen Energy,2010,35:2486-2490.

[32]W.Sun,L.Yan,B.Lin,High performance proton-conducting solid oxide fuel cells with a stable Sm 0.5 Sr 0.5 Co 3- δ -Ce 0.8 Sm 0.2 O 2- δ composite cathode[J].Journal of Power Sources,2010,195:3155-3158.

[33]H.Ding,X.Xue.A novel cobalt-free layered GdBaFe 2 O 5 + δ cathode for proton conducting solid oxide fuel cells[J]. Journal of Power Sources,2010,195:4139-4142.

[34]邵宗平.中低温固体氧化物燃料电池阴极材料[J].化学进展,2011,23(2 /3):418-429.

[35]刘扬,高文元,孙俊才.SOFC复合阴极材料的研究进展[J].电池,2006,36(3):234-236.

[36]Y.Guo,B.Liu,Q.Yang,et al.Preparation via microemulsion method and proton conduction at intermediate-temperature of BaCe 1- x Y x O 3- α [J]. Electrochemistry Communications,2009,11:153-156.

[37] C.Chen,G.Ma.Proton conduction in BaCe 1- x Gd x O 3- α at intermediate temperature and its application to synthesis of ammonia at atmospheric pressure[J].Journal of Alloys and Compounds,2009,485:69-72.

[38]G.Ma,H.Matsumoto,H.Iwahara.Ionic conduction and nonstoichiometry in non-doped Ba x CeO 3- α [J]. Solid State Ionics,1999,122:237-247.

[39]G.Ma,T.Shimura,H.Iwahara.Simultaneous doping with La 3 + and Y 3 + for Ba 2 + and Ce 4 + sites in BaCeO 3 and the ionic conduction [J]. Solid State Ionics,1999,120:51-60.

[40] K.Takeuchi,C-K.Loong,Jr J.W.Richardson,et al.The crystal structures and phase transitions in Y-doped BaCeO 3 :their dependence on Y concentration and hydrogen doping[J]. Solid State Ionics,2000,138:63-77.

[41]L.Bi,Z.Tao,W.Sun,et al.Proton-conducting solid oxide fuel cells prepared by a single step co-firing process[J]. Journal of Power Sources,2009,191:428-432.

[42]K.Xie,R.Yan,X.Chen,et al.A new stable BaCeO 3 -based proton conductor for intermediate-temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds,2009,472:551-555.

[43]L.Bi,S.Zhang,S.Fang,et al.A novel anode supported BaCe 0.7 Ta 0.1 Y 0.2 O 3- δ electrolyte membrane for proton-conducting solid oxide fuel cell[J]. Electrochemistry Communications,2008,10:1598-1601.

[44] K.Xie,R.Yan,X.Liu.A novel anode supported BaCe 0.4 Zr 0.3 Sn 0.1 Y 0.2 O 3- δ electrolyte membrane for proton conducting solid oxide fuel cells[J]. Electrochemistry Communications,2009,11:1618-1622.

[45]M.Oishi,S.Akoshima ,K.Yashiro,et al.Defect structure analysis of B-site doped perovskite-type proton conductingoxide BaCeO 3 Part 2:The electrical conductivity and diffusion coefficient of BaCe 0.9 Y 0.1 O 3- δ [J]. Solid State Ionics,2008,179:2240-2247.

[46]M.Oishi,S.Akoshima ,K.Yashiro,et al.Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO 3 Part 1:The defect concentration of BaCe 0.9 M 0.1 O 3- δ (M = Y and Yb) [J]. Solid State Ionics,2009,180:127-131.

[47]Z.Tao,Z.Zhu,H.Wang,et al.A stable BaCeO 3 -based proton conductor for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources,2010,195:3481-3484.

[48]C.Zuo,S.Zha,M.Liu,et al.Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3- δ as an electrolyte for low-temperature solid-oxide fuel cells[J]. Advanced Materials,2006,18,3318-3320.

[49]L.Yang,C.Zuo,S.Wang,et al.A novel composite cathode for low-temperature SOFCs based on oxide proton conductors[J]. Advanced Materials,2008,20,3280-3283.

[50]L.Yang,C.Zuo,M.Liu.High-performance anode-supported solid oxide fuel cells based on Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3- δ (BZCY)fabricated by a modified co-pressing process[J]. Journal of Power Sources,2010,195:1845-1848.

[51]凌意瀚.基于固体氧化物燃料电池应用的基础研究[D].合肥:中国科学技术大学,2013.

[52]任铁梅.固体氧化物燃料电池及其材料[J].电池,1993,23(4):191-194.

[53]迟克彬,李方伟,李影辉,等.固体氧化物燃料电池研究进展[J].天然气化工,2002,4(27):37-43.

[54]郭挺.固体氧化物燃料电池电解质和阳极材料的制备方法及性能研究[D].合肥:中国科学技术大学,2014.

[55]周银,马桂君,刘红芹,等.固体氧化物燃料电池材料的研究进展[J].化工新型材料,2014,3(42):13-18.

[56]李中秋,侯桂芹,张文丽.钙钛矿型固体电解质材料的发展现状[J].河北理工学院学报,2006,1(28):71-73.

[57]程继海,王华林,鲍巍涛.钙钛矿结构固体电解质材料的研究进展[J].材料导报,2008,9(22):22-24.

[58]徐志弘,温廷琏.掺杂BaCeO 3 和SrCeO 3 在氧、氢及水气气氛下的电导性能[J].无机材料学报,1994,9(1):122-128.

[59]陈威,王常珍,刘亮.测熔融铝合金中氢活度的传感法研究[J].金属学报,1995,31(7):305-310.

[60]马桂林.Ba 0.95 Ce 0.90 Y 0.10 O 3- α 固体电解质的质子导电性[J].无机化学学报,1999,15(6):798-801.

[61]李永峰,董新法,林维明.固体氧化物燃料电池的现状和未来[J].电源技术,2002,26(6):462-465.

[62] O.Yamamoto.Solid oxide fuel cells:fundamental aspects andprospects[J]. Electrochim Acta,2000,45(15):2423-2435.

[63]D.Stöver,H.P.Buchkremer,S.Uhlenbruck.Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC)[J]. Ceramics International,2004,30(7):1107-1113.

[64]刘建国,孙公权.燃料电池概述[J].物理学与新能源材料专题,2004,32:79-83.

[65]石金华.磷酸型燃料电池的新用途[J].国外油田工程,2001,5:27-29.

[66]M.Farooque,P.Lund,J.Byrne.The carbonate fuel cell-concept to reality[J]. Wiley Interdisciplinary Reviews Energy & Environment,2014,4 (2):178-188.

[67]曹殿学,王贵领,吕艳卓.燃料电池系统[M].北京:北京航空航天大学出版社,2009:204-224.

[68]M.Pokojski.The first demonstration of the 250-kW polymer electrolye fuel cell for station application [J]. Journal of Power Sources,2000,86 (1):140-144.

[69] W.Vielstich,H.A.Gastiger,A.Lamm.Handbook of Fuel Cells-Fundamentals Technonlgy and Applications [M]. New York:John Wiley & Sons Ltd,2003.126-128.

[70]F.Bacntsch.Liberalisation — challenges and opportunities for fuel cells[J]. Journal of Power Sources,2000,86(2):84-89.

[71]《2016—2022 年中国燃料电池行业分析及市场深度调查报告》.智研咨询集团,2016 年 6 月.

[72]A.Coralli,H.V.D.Miranda,C.F.E.Monteiro,et al.Mathematical model for the analysis of structure and optimal operational parameters of a solid oxide fuel cell generator[J]. Journal of Power Sources,2014,269(4):632-644.

[73]孙帆,郑勇,高小龙,等.固体氧化物燃料电池电解质和电极材料的研究进展[J].金属功能材料,2010,17(4):75-80.

[74]F.Scappin.Integrating a SOFC with a steamcycle[D]. Lyng by:Technical University of Denmark,2009.

[75 ] Z.Zhan,S.Wang,S.A.Barnett,et al.A solid oxide cell yielding high power density below 600℃ [J]. RSC Advances,2012,2:4075-4078.

[76]彭珍珍,杜洪兵,陈广乐,等.国外SOFC研究机构及研发状况[J].硅酸盐学报,2010,38(3):542-548.

[77]D.J.L.Brett,A.Atkinson,N.P.Brandon,et al.Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews,2008,37:1568-1578.

[78]A.B.Stambouli,E.Traversa.Solid Oxide Fuel Cells ( SOFCs):A review of an environmentally clean and efficient source of energy[J]. Renewable and Sustainable Energy Reviews,2002,6(5):433-455.

[79]毛宗强,王诚.低温固体氧化物燃料电池[M].1 版.上海:上海科学技术出版社,2013:87-98.

[80]韩敏芳,彭苏萍.固体氧化物燃料电池材料及其制备[M].北京:科学出版社,2004.

[81]江金国,陈文,徐庆,等.中温固体氧化物燃料电池材料的研究进展[J].现代陶瓷技术,2003,23:198-200.

[82]M.Sahibzada,S.J.Benson,R.A.Rudkin,et al.Pd-Promoted La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 Cathodes[J]. Solid State Ionics,1998,113-115:285-290.

[83] F.Liang,J.Chen,S.Jiang,et al.High performance solid oxide fuel cells with electrocatalytically enhanced ( La,Sr) MnO 3 cathodes [J]. Electrochemistry Communications,2009,11:1048-1051.

[84]S.P.Simner,M.D.Anderson,J.E.Coleman,et al.Performance of a novel La(Sr)Fe(Co) O 3 -Ag SOFC cathode[J]. Journal of Power Sources,2006,161:115-122.

[85]黄守国,夏长荣,孟广耀.中温固体氧化物燃料电池的Ag-YSB复合阴极[J].材料研究学报,2005,19(1):54-58.

[86]A.Grosjean,O.Sanséau,V.Radmilovic,et al.Reactivity and diffusion between La 0.8 Sr 0.2 MnO 3 and ZrO 2 at interfaces in SOFC cores by TEM analyses on FIB samples[J]. Solid State Ionics,2006,177:1977-1980.

[87]S.P.Jiang.A comparison of O 2 reduction on porous ( La,Sr) MnO 3 and(La,Sr)(Co,Fe)O 3 electrodes[J]. Solid State Ionics,2002,146:1-22.

[88] A.Esquirol,N.P.Brandon,J.A.Kilner,et al.Electrochemical characterization of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 cathodes for intermediate-temperature SOFCs[J].Journal of the Electrochemical Society,2004,151(11):A1847-A1855.

[89]J.Chen,F.Liang,L.Liu,et al.Nano-structured (La,Sr) (Co,Fe)O 3 +YSZ composite cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources,2008,183:586-589.

[90]Z.Shao,S.M.Haile.A high-performance cathode for the next generation of solid oxide fuel cells[J]. Nature,2004,431:170-173.

[91 ] V.V.Vashook,I.I.Yushkevich,L.V.Kokhanovsky,et al.Composition and conductivity of some nickelates[J]. Solid State Ionics,1999,119 (1-4):23-30.

[92] H.W.Nie,T.L.Wen,S.R.Wang,et al.Preparation,thermal expansion,chemical compatibility,electrical conductivity and polarization of A 2- α A α ′MO 4 (A =Pr,Sm; A′ = Sr; M = Mn,Ni; α = 0.3,0.6) as a new cathode for SOFC[J]. Solid State Ionics,2006,177(19-25):1929-1932.

[93] M.Al.Daroukh,V.V.Vashook,H.Ullmann,et al.Oxides of the AMO 3 and A 2 MO 4 -type:structural stability,electrical conductivity and thermal expansion[J]. Solid State Ionics,2003,158:141-150.

[94]S.C.Singhal.Advances in solid oxide fuel cell technology[J]. Solid State Ionics,2000,135:305-313.

[95]张文强,于波,张平,等.固体氧化物燃料电池阳极材料研究及其在高温水电解制氢方面的应用[J].化学进展,2006,6:149-157.

[96]O.C.Nunes,R.J.Gorte,J.M.Vohs.Comparison of the performance of Cu-CeO 2 -YSZ and Ni-YSZ composite SOFC anodes with H 2 ,CO,and syngas[J].Journal of Power Sources,2005,141:241-249.

[97] H.Kurikama,T.Z.Sholklapper,C.P.Jacobson,et al.Ceria nanocoating for sulfur tolerant Ni-based anodes of solid oxide fuel cells[J]. Electrochemical Solid-State letter,2007,10:B135-B138.

[98]S.C.Singhal.Solid oxide fuel cells for stationary,mobile,and military applications[J]. Solid State Ionics,2002,152-153:405-410.

[99]刘伟明,李胜利,孙良成,等.固体氧化物燃料电池铬酸镧连接材料研究现状[J].金属热处理,2002,27(11):8-10.

[100]J.W.Fergus.Lanthanum chromite-based materials for solid oxide fuel cell interconnects[J]. Solid State Ionics,2004,171:1-15.

[101]S.Bilger,G.Blaβ,R.Förthmann.Sol-gel synthesis of lanthanum chromite powder [J]. Journal of the European Ceramic Society,1997,17 (8 ):1027-1031.

[102]卢凤双,张建福,华彬,等.固体氧化物燃料电池连接体材料研究进展[J].金属功能材料,2008,15(6):44-48.

[103] B.Zhu,I.Albinsson,C.Andersson,et al.Electrolysis studies based on ceria-based composites [J]. Electrochemistry Communications,2006,8 (3):495-498.

[104] S.C.Singhal.High-temperature solid oxide fuel cells:Fundamentals,design and applications[M]. New York:Elsevier Advanced Technology,2003.

[105]林旭平,徐舜,艾德生,等.中低温固体氧化物燃料电池电解质材料研究进展[J].科技导报,2017,35 (8):47-53.

[106]李勇,邵刚勤,段兴龙,等.固体氧化物燃料电池电解质材料的研究进展[J].硅酸盐通报,2006,1:42-45.

[107 ] Y.Ji,J.Liu,Z.Lv,et al.Study on the properties of Al 2 O 3 -doped(ZrO 2 0.92 (Y 2.3 0.08 electrolyte[J]. Solid State Ionics,1999,126:277-283.

[108] D.J.Brett,A.Atkinson,N.P.Brandon,et al.Intermediate temperature solid oxide fuel cells[J]. Chemical Society Review,2008,37:1568-1578.

[109]J.Huang,F.Xie,Z.Mao,et al.Development of solid oxide fuel cell material for intermediate-to-low temperature operation[J]. International Journal of Hydrogen Energy,2012,37(1):877-883.

[120]E.D.Wachsman,K.T.Lee.Lowering the temperature of solid oxide fuel cells[J]. Science,2011,334(6058):935-939.

[121] B.C.Steele,A.Heinzel.Materials for fuel-cell technologies [J]. Nature,2001,414:345-352.

[112] R.M.Ormerod.Solid oxide fuel cells [J]. Chemical Society Reviews,2003,32:17-28.

[113] T.Ishihara,Y.Hiei,Y.Takita,et al.Oxidative reforming of methane using solid oxide fuel cell with LaGaO 3 -based electrolyte[J]. Solid State Ionics,1995,79:371-375.

[114]T.Ishihara,M.Honda,T.Shibayama,et al.Intermediate temperature solid oxide fuel cells using a new LaGaO 3 based oxide ion conductor-I.Doped SmCoO 3 as a new cathode material [J]. Journal of the Electrochemical Society,1998,145:3177-3183.

[115] T.Ishihara,T.Shibayama,S.Ishikawa,et al.Novel fast oxide ion conductor and application for the electrolyte of solid oxide fuel cell[J]. Journal of the European Ceramic Society,2004,24:1329-1335.

[116]D.Hirabayashi,A.Tomita,M.Sano,et al.Improvement of a reduction-resistant Ce 0.8 Sm 0.2.1.9 electrolyte by optimizing a thin BaCe 1- x Sm x O 3-δ layer for intermediate-temperature SOFCs[J]. Solid State Ionics,2005,176(9-10):881-887.

[117]A.Demin,P.Tsiakara.Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor[J]. International Journal of Hydrogen Energy,2001,26(10):1103-1108.

[118]孙文平.中低温固体氧化物燃料电池新材料与结构设计及电化学性能研究[D].合肥:中国科学技术大学,2013.

[119]J.Hou,J.Qian,L.Bi,et al.The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells[J].Journal of Materials Chemistry A,2015,3:2207-2215.

[120]Y.Xu,Z.Wen,S.Wang,et al.Cu doped Mn-Co spinel protective coating on ferritic stainless steels for SOFC interconnect applications[J]. Solid State Ionics,2011,192(1):561-564.

[121]K.D.Kreuer.Proton-conducting oxides[J]. Annual Review of Materials Research,2003,33:333-359. 80rIAS9eDDNTc9xwVDhPENubX8iCqtaoU8bpQ7bhMqgvqGblRbw4R8uOyggfTutH

点击中间区域
呼出菜单
上一章
目录
下一章
×