购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

二、系统科学模型研究

近代科学创造了模型方法,现代科学更加突出了模型方法的重要性。系统科学进一步把模型方法提升为基本方法。 系统科学虽然重视模型方法,但是其还没有确立自己通用的基础模型。根据苗东升的《系统科学大学讲稿》归纳系统科学研究模型现状的分类如下:

1.系统的框图模型

在二维的载体上,用一个个封闭的小框图代表系统的各个组分或子系统,在框图内或框图边注明组分或子系统的名称,按照系统的结构模式把它们排列安置于适当位置,用无向线段或有向线段把这些小框图连接起来,以表示系统的基本结构框架,再用无向线段或有向线段表示系统与环境的联系,这样形成的图形就叫作系统的框图模型。框图模型在具体的系统研究中,具有积极意义,比如人文社会系统和经济生活系统中常用框图模型来展开研究。最简单的框图模型是输入—输出模型,如图2-1所示:

图2-1 最简单的输入—输出框图模型

最简单的框图模型可以是系统的通用模型,但过于粗糙,不利于系统科学展开深入研究。

2.系统的数学模型

一切以数学语言表示出来的关系,包括最简单的表格、曲线(图)等,都是数学模型。数学模型是对真实系统的某些特性用数学的方法进行描述,并揭示相关的数学关系,从而对系统进行有效认识和研究的模型。数学提供的各种描述手段,如函数、方程、矩阵、几何图形等,以及抽象代数的群、环、格、坡等,都可以用作真实系统的数学模型。最常用的数学模型是解析模型,即原型系统的变量、常量之间相互关系的解析表达式,主要是各种方程,特别是代数方程、微分方程和差分方程。比如著名的逻辑斯蒂差分方程,在生态科学、经济科学和认知科学等领域都有重要应用。数学是系统科学研究的必备工具和手段,但数学模型不是充分具备系统意义的基础模型。

3.系统的网络模型

网络模型,更一般地说是图论模型。图论是数学的重要分支。基于图论建立的数学模型,特别是网络模型,是描述系统的有力工具。以点代表系统的组分,称为节点或顶点,节点之间的联系用一条线段表示,称为边,全部节点和边的集合就是系统的图论模型。图论应用的一个著名例子是哥斯尼堡七桥问题。适宜用图作模型的系统往往涉及流动问题,有物质、能量、资金、人力、信息等从图中的某一点流向另一点。图论刻画的是系统的拓扑特性,它反映的是结点(对象)之间的连接性质,至于点之间的相对位置、连线的曲直长短,并不重要。这种不在乎点的相对位置、线的曲直长短的连接性质,就是拓扑特性,具有重要的系统意义。赋予系统意义的图论模型是研究的重点,因为系统学的基础模型要具备本质的系统意义。

4.系统的计算机程序模型

在计算机科学发展的条件下,系统科学研究与计算机技术相结合的模型,就是系统的计算机程序模型。依托计算机科学,把系统内部的组分的关联方式提炼为若干规则,以“若……则……”形式的程序语言表达出来,以便通过计算机的数值计算模拟对象系统的运行演化,观察构件如何通过执行这些简单规则而涌现出系统的整体特性,预测系统的未来走向,主要用于大型复杂计算或数值实验。以计算机程序来定义的基于计算机的系统模型,正获得越来越广泛的应用。系统的计算机程序模型,很显然是应用模型,不能是系统学基础模型。

5.系统的直观模型

系统的直观模型对于系统科学具有经典意义。世界中的各种事物都是以系统的方式存在的,无论是有机的、无机的、社会的或文化的,给我们的是一个直观的轮廓,即系统是一定边界范围内部相互作用的多个要素的整体。作为非严格的系统定义,该系统描述性整体轮廓就是一种直观的模型,其一包括多个组分要素,其二包括了各个组分要素之间的相互作用,其三具有一定的系统边界范围。系统直观模型,实际是一种模型性解释系统的观点,如图2-2所示

图2-2 系统直观模型

从系统直观模型可看出,边界是相对稳定的系统在时空中延展范围或在逻辑范围的一定界限,是系统的最基本的要素之一。从传统唯物论来看,实在系统通常具有时间和空间的限定,比如米勒说:“系统是空间和时间上有限的一个领域……”从逻辑上来说,系统作为一个整体应当有一个边界。系统研究作为针对实际工作用的一种世界模型或假说,是通过边界的划分而使某一个研究整体得到相对确立,使系统与环境、系统内部组分之间、系统层次等关系得到明确,本质上是把握事物过程中研究和分析对象的一种方法。该模型是静止的模型,描述出了系统的边界性和相互作用组织性。

6.系统的动态说明模型

系统是动态的,运动和发展的。因此,在系统静态模型描述的基础上,应当强调其动态说明。笼统地来讲,动态系统描述包括三个方面:边界性、组织性和动态性。在系统直观模型的基础上,可以用下面的框图来揭示动态系统意义(如图2-3所示)。

贝塔朗菲认为:“理解组织的完整性,应当既认识各组成部分,也认识它们之间的关系。”系统之所以为系统,是因为其内部组分之间具有紧密的联系。针对这种紧密联系,不能作机械的、完全可还原的认识,而应当作涌现条件的认识研究,动态系统才能产生涌现现象。系统的动态性是指形成系统整体性的现实运动变化的方面,没有系统内部组分的永恒运动,就没有系统的整体运动,也没有系统整体的永恒运动。将系统的直观模型同系统的动态意义有机结合起来形成新的一般意义的模型,是系统科学基础模型研究的重点。

图2-3 系统的动态说明模型 ut1KdHOafbO++GapCbsR5Wyccj1BPmF6sL3QMUO6kKnCdhixnXaFxGETuyxxuXQk

点击中间区域
呼出菜单
上一章
目录
下一章
×