购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

2.2 平面电路的电磁场展开

平面电路可以分为短路边界平面电路和开路边界平面电路 [1] 。通常的平面电路比如微带、带状线等都是开路边界平面电路;短路边界平面电路是厚度非常薄的腔体电路,除了端口以外的边界都是电壁,侧壁金属封闭的CBCPW(具有地平面的共面波导)、侧壁金属封闭的带状线可近似看作短路边界平面电路。在实际平面电路设计中,侧壁金属封闭可以防止电磁泄漏甚至能使腔内电磁场更强,其他方面和一般平面电路没有明显区别,因此这里主要介绍开路边界平面电路的电磁场展开。用本征矢量把平面电路内的电磁场矢量展开,再借助麦克斯韦方程组确定展开系数。

无论是开路边界平面电路还是短路边界平面电路,其电路结构在 z 轴方向上都非常薄,因此可以认为电磁场在 z 轴方向是均匀的。平面电路通常被上下导体夹起来,所以不存在 z 轴方向的磁场,即 H z =0,从而 E x E y 也是零,这样平面电路就可看成是电场、磁场分别为 E =(0,0, E z )和 H =( H x H y ,0)的一种空腔谐振器,空腔谐振器的一般理论就能应用于平面电路。开路边界平面电路侧壁都可以作为磁壁处理。平面电路的一般分析模型如图2.2所示。其中, C 是开路边界, D 为电路区域, t 是切向单位矢量, n 是外法向单位矢量,电路有多个端口,其宽度为 W i W j ……

图2.2 平面电路的一般分析模型

通常,矢量场可用散度为零的环流场和旋度恒为零的梯度场来表示。若把平面电路内的电磁场矢量场用环流场和梯度场展开,则可表示为 [1]

其中, E za F zv z 轴方向电场的本征矢量, H a G λ x-y 平面上磁场的本征矢量, e a f v h a g λ 都是展开系数。 E za H a 表示环流场, F zv G λ 表示梯度场,它们分别满足:

根据式(2.19a)~式(2.19d),环流场本征矢量在开路边界条件下,满足 [1]

在短路边界条件下,满足

梯度场的本征矢量因为其旋度为零所以可用某一标量的梯度来表示。这些本征矢量是满足下列正交条件并且按归一化定义的矢量:

式(2.22)中的积分域 D 表示在图2.2中平面电路的整个区域上进行面积分。

各向同性媒质中的电磁场满足下列麦克斯韦方程:

将式(2.23b)乘以 H a 并在 D 上进行面积分,可得

再将式(2.23a)乘以 E za 并在 D 上进行面积分,可得

将式(2.23b)乘以 G λ ,进行同样的积分运算,并考虑到▽× G λ =0,则得

再将式(2.23a)乘以 F zv ,进行同样的积分运算,并考虑到▽× F zv =0,则得

由式(2.24)~式(2.27)可确定满足式(2.18a)和式(2.18b)的展开系数:

在开路边界条件下,把除端口以外的边界都假定为磁壁,因此,展开电磁场的本征矢量也选择在边界上满足开路边界条件的矢量:

式中, i z z 轴方向的单位矢量, S 是区域 D 的面积。因为 F z 0 是梯度场,所以可用标量 f 表示成 F z 0 =▽ f F z 0 z 轴方向的矢量,若考虑到电磁场在 z 轴方向是均匀的,显然有 K 为常数)。

式中, φ a ψ λ 是本征函数。 φ a 满足 (在 D 内), ∂φ a / ∂n =0(在 C 上),并且

可以证明, E za H a 可以同时归一化。

ψ λ 满足 (在 D 内), ψ λ =0(在 C 上),并且

选择上述本征矢量,再考虑开路边界的边界条件,则式(2.24)和式(2.26)可简化为

可见,磁场的梯度场在开路边界平面电路中是不存在的。

由式(2.34)和式(2.25)可求出展开系数 e a h a ,而 f v g λ 可由式(2.35)和式(2.27)给出。把求得的展开系数代入式(2.18a)和式(2.18b),则平面电路内的电磁场可表示为

这里, k 2 = ω 2 εμ i n 表示从端口流出的电流密度, -i n 表示从端口流入的电流密度,在平面电路中激励起来的电磁场如式(2.36)和式(2.37)所示。

根据式(2.36),端口 i 上的电场 E s i )= E z s i i z 可由式(2.38)给出:

如果用带线的本征模 E im s i )把端口 i 处的电场和电流密度展开,则可表示成

其中, d 是基板厚度,端口 i 的第 m 个模的特性阻抗 Z im 可表示为

此外,再把本征模的振幅按式(2.42)归一化:

由端口 i 流入的功率按 归一化。

将式(2.39)和式(2.40)代入式(2.38),求以端口 i 的第 m 个模的电压振幅 V im 和端口 j 的第 n 个模的电流振幅 I jn 的2倍(考虑正反两面)之比定义的阻抗矩阵元素 ,可得 [1]

m =0, n =0时,即当传输TEM波时, E jn = E im =1,式(2.43)变为

假定电路无损耗,令

其中, S 是区域 D 的面积, ω a = ω n N ni N nj 是理想变压器的变压比, Z ij 可表示为

在电路有损耗的情况下,式(2.47)中将含有电导成分,可修改为

式中, G 0 与介质的损耗角正切成正比, G n 与各个模的无载 Q 值( Q 0 n )成反比,分别表示为

多端口平面电路的集总参数等效电路如图2.3所示。等效电路中的并联谐振回路对应于式(2.48)等号右边的第一项,由上述推导过程可知,它是由电磁场矢量的环流场产生的。等效电路中的静电容 C 0 对应于式(2.48)等号右边的第二项, C 0 是由电场矢量的梯度场产生的,其大小由平面电路的面积决定。

图2.3 多端口平面电路的集总参数等效电路 HE2kWPBbzqlVkA5LBdU2NurkRv3SAi33pFiYuXyfbE3OfZlGHtLPTAXSiS0/k0PU

点击中间区域
呼出菜单
上一章
目录
下一章
×