购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

缩略词表

ATP: 三磷酸腺苷,细胞的能量分子

CR: 热量限制

DNA: 脱氧核糖核酸

ECM: 细胞外基质

ES: 胚胎干细胞

GH: 生长激素

IGF-1: 胰岛素样生长因子-1

IIS: 胰岛素和IGF-1信号

iPSC: 诱导性多能干细胞

mTOR: 哺乳动物雷帕霉素靶蛋白,一种控制细胞活性的蛋白质

PGC-1α: 过氧化物酶体增殖物激活受体γ辅激活因子-1α

ROS: 活性氧类,又称自由基

WS: 沃纳综合征

[1] 对十几位主要研究人员关于衰老基本机制的简短访谈,可参阅Linda Partridge, Toren Finkel, Amita Sehgal, Pankaj Kapahi, et al,“Focus on Aging”, Cell Metabolism 23 (2016): 951-956, a 2016。另外,由国家地理频道制作的一段名为 The Age of Aging 的优秀视频是Breakthrough节目的一部分。

[2] 如果你想了解衰老的机制,可观看以下YouTube视频,https://www.youtube.com/watch?v=q8mJZOuaMLY。

[3] 关于美国的项目,可参阅https://www.reuters.com/article/us-usa-obama-precisionmedicine-idUSKBN0L313R20150130;关于欧盟的项目,可参阅https://www.ictandhealth.com/news/next-country-joins-the-1-million-genomes-initiative/;关于中国的项目,可参阅https://futurism.com/discovery-make-invisibility-cloak;关于23andMe的内容,可参阅https://www.23andme.com。

[4] Elizabeth Blackburn和Elissa Epel撰写的《端粒效应:年轻、健康、长寿的新科学》[ The Telomere Effect (New York: Grand Central Press, 2016)]一书。

[5] https://www.zymoresearch.com/pages/dnage。

[6] 第一个早期生命分离实验是由Ian C. G. Weaver, Nadia Cervoni, Frances A. Champagne, Ana C D' Alessio等报道的,可参阅“Epigenetic Programming by Maternal Behavior”, Nature Neuroscience 7, no. 8 (2004): 847-854, doi: 10.1038/nn1276, PMID: 15220929。此背景下有关表观遗传学和表观遗传时钟的相对通俗的探讨,可参阅https://www.whatisepigenetics.com/cuddling-can-leave-positive-epigenetic-traces-babys-dna/;该时钟是由Dr. Steve Horvath提出的,可参阅“DNA Methylation Age of Human Tissues and Cell Types”, Genome Biology 14, no. 10 (2013): R115-135, doi: 10.1186/gb-2013-14-10-r115, PMID: 24138928。Alejandro Ocampo, Pradeep Reddy, Paloma Martinez-Redondo, Aida Platera Luenga等(大约20名其他研究人员)描述了一种逆转小鼠衰老的大胆方法,可参阅“In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming”, Cell 167, no. 7 (2016): 1719-1733, doi: 10.1016/j.cell.2016.11.052。

[7] A. J. Hulbert,“Metabolism and Longevity: Is There a Role for Membrane Fatty Acids?”, Integrative and Comparative Biology 50, no. 5 (2010): 808-817, doi: 10.1093/icb/icq007, PMID: 21558243。

[8] Lee Know就这一主题写了一本经过深入研究且通俗易懂的书, The Future of Mitochondria in Medicine: The Key to Understanding Disease, Chronic Illness, Aging, and Life Itself (White River Junction VT: Chelsea Green Press, 2018)。该书全面深入地研究了线粒体,包括其进化起源,以及其对健康、疾病和哲学的各种影响,可参阅Nick Lane的《能量,性,自杀》[ Power, Sex, Suicide: Mitochondria and the Meaning of Life (Oxford: Oxford University Press, 2005)]一书。如果你想再深入一步,可参阅这篇综述:Douglas C. Wallace,“A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine”, Annual Review of Genetics 39 (2005): 359-410, doi: 10.1146/annurev.genet.39.110304.095751。

[9] Nathan Basisty, Dao-Fu Dai, Ami Gagnidze, Lemuel Gitari, et al,“Mitochondrial-Targeted Catalase Is Good for the Old Mouse Proteome, But Not for the Young: 'Reverse' Antagonistic Pleiotropy?”, Aging Cell 15, no. 4 (2016): 634-645. https://doi.org/10.1111/acel.12472。想要了解本章中对这一机制和许多其他机制的全面但技术性的概述,可参阅Ines Figueira, Adelaide Fernandes, Aleksandra Mladenovic Djordjevic, Andre Lopez-Contreras et al,“Interventions for Age-Related 222 Diseases: Shifting the Paradigm”, Mechanisms of Ageing and Developm ent 160 (2016): 69-92, doi: 10.1016/j.mad.2016.09.009, PMID: 27693441。

[10] 最近发表了很多关于所谓的NAD + 领域的文章,因为这是最近衰老领域的一个热门研究话题。在Firewall on Aging网站(http://www.anti-agingfirewalls.com/)上,有一些或多或少可以理解的博客文章和链接。关于NAD + 是如何随着年龄的增长而影响线粒体的详细、集中的机制解释,可参阅A. P. Gomes, Nathan L. Price, Alvin J. Ling, Javin J. Moslehi, et al,“Declining NAD(+) Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging”, Cell 155, no. 7 (2013): 1624-1638, doi: 10.1016/j.cell.2013.11.037, PMID: 24360282。

[11] 可参阅Wallace,“Mitochondrial Paradigm”或Matthew Walker撰写的《我们为什么要睡觉》[ Why We Sleep: Unlocking the Power of Sleep and Dreams (New York: Scribner, 2017)]一书,可以了解更多关于睡眠在调节这些路径中的作用的内容。

[12] Andrzej Bartke, Westbrook Reyhan,“Metabolic Characteristics of Long-Lived Mice”, Frontiers in Genetics 3 (2012): 288, doi: 10.3389/fgene.2012.00288。想要深入了解TOR的影响,可参阅Mikhail V. Blagosklonny,“Aging and Immortality: Quasi-Programmed Senescence and Its Pharma-cologic Inhibition”, Cell Cycle 5, no. 18 (2006): 2087-2102, doi: 10.4161/cc.5.18.3288, PMID: 17012837。

[13] 了解下 The Future of Mitochondria in Medicine 一书。

[14] Judith Campesi在慢性炎症现象及其在年龄相关疾病中的作用方面有广泛的著述,例如,① C. Franceschi, J. Campisi,“Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases”, Journals of Gerontology.Series A, Biological Sciences and Medical Sciences 69, suppl. 1 (2014): S4-9, doi: 10.1093/gerona/glu057, PMID: 24833586;② Hae Young Chung, Mateo Cesari, Stephen Anton, Emmaneuelle Marzetti, et al,“Molecular Inflammation: Underpinnings of Aging and Age-Related Diseases”, Ageing Research Reviews 8, no. 1 (2009): 18-30, doi: 10.1016/j.arr.2008.07.002, PMID: 18692159;③ Anne M. Minihane, Sophie Vinoy, Wendy R. Russell, Athanasia Baka, et al,“Low-Grade Inflammation, Diet Composition and Health: Current Research Evidence and Its Translation”, British Journal of Nutrition 114, no. 7 (2015): 999-1012, doi: 10.1017/S0007114515002093, PMID: 26228057,本文为一篇关于饮食对炎症作用的优秀综述。

[15] 想要了解在小鼠实验中的初步发现,可参阅 Science Daily 关于下丘脑激素的文章,www.sciencedaily.com/releases/2013/05/130501131845.htm;想要详细了解被称为异种共生的血液交换过程的描述,请阅读 Nature 杂志的摘要,www.nature.com/news/ageing-research-blood-to-blood-1.16762。

[16] 有关衰老细胞及其在衰老中的作用的全面综述,可参阅Christopher D. Wiley, Judith Cam-pisi,“From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence”, Cell Metabolism 23, no. 6 (2016): 1013-1021, https://doi.org/10.1016/j.cmet.2016.05.010。Sue Armstrong撰写的 Borrowed Time: The Science of How and Why We Age (London: Bloomsbury Sigma, 2019)一书中记录了对发现衰老细胞的Judith Campes进行的有趣的采访,并更详细地阐述了衰老细胞在某些情况下的潜在益处。Angelika Amon在MIT Spectrum上给出了细胞规模假说,相关的有趣的非技术采访参见http://spectrum.mit.edu/fall-2019/taking-aim-at-cell-dysfunction/;有大量链接的快速阅读,可参阅Fight Aging网站www.fightaging.org/archives/2014/07/aiming-to-remove-the-senescent-cell-contribution-to-aging-and-age-related-disease/。

[17] 一篇内容全面但技术性较强的综述:James L. Kirkland, Tamara Tchkonia,“Cellular Senescence: A Translational Perspective”, EBioMedicine 21 (2017): 21-28, doi: 10.1016/j.ebiom.2017.04.013, PMID: 28416161。Fight Aging网站上发表了候选药物列表:www.fightaging.org/archives/2017/03/the-current-state-of-senolytic-drug-candidates/。

[18] Vikramit Lahiri和Daniel J. Konski于2018年3月在 The Scientist 上发表了一篇很棒的综述(“Eat Yourself to Live: Autophagy's Role in Health and Disease”),但专业术语有点多。如果你想听一场包括有标记的图表和术语定义的精彩的讲座,可参阅Rhonda Patrick的网站:https://www.foundmyfitness.com/episodes/guido-kroemer。 2ln0CM0ofB6XHh66SoErWsyDC4uFWSGt7H+r/+W+5gCqWwmiTBOHvjDcCJX+nWZU

点击中间区域
呼出菜单
上一章
目录
下一章
×