[1]Liu J. Advanced liquid metal cooling for chip,device and system. Shanghai:Shanghai Science&Technology Press,2020.
[2]Liu J. Nano liquid metal materials:when nanotechnology meets with liquid metal. Nanotech Insights,2016,7(3&4):2-6.
[3]Zhang Q,Liu J. Nano liquid metal as an emerging functional material in energy management,conversion and storage. Nano Energy,2013,2(5):863-872.
[4]Ma K Q,Liu J. Nano liquid-metal fluid as ultimate coolant. Physics Letters A,2007,361:252-256.
[5]刘静,王磊. 液态金属3D打印技术:原理及应用. 上海:上海科学技术出版社,2019.
[6]刘静,王倩. 液态金属印刷电子学. 上海:上海科学技术出版社,2019.
[7]Wang Q,Yu Y,Pan K,et al. Liquid metal angiography for mega contrast x-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Transactions on Bio-medical Engineering,2014,61(7):2161.
[8]Yi L,Liu J. Liquid metal biomaterials:a newly emerging area to tackle modern biomedical challenges. International Materials Reviews,2017,62(7):1-26.
[9]Liu J,Yi L. Liquid metal biomaterials:principles and applications. Springer,2018.
[10]Gao Y X,Li H Y,Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE,2012,7(9):e45485.
[11]Zhang Q,Zheng Y,Liu J. Direct writing of electronics based on alloy and metal ink(DREAM Ink):A newly emerging area and its impact on energy,environment and health sciences. Frontiers in Energy,2012,6(4):311-340.
[12]Li H Y,Yang Y,Liu J. Printable tiny thermocouple by liquid metal gallium and its matching metal. Applied Physics Letters,2012,101:073511.
[13]Liu Y,Gao M,Mei S F,et al. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Applied Physics Letters,2013,102:064101.
[14]Palleau E,Reece S,Desai S C,et al. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Advanced Materials,2013,25(11):1589-1592.
[15]Cheng S,Wu Z. A microfluidic,reversibly stretchable,large-area wireless strain sensor. Advanced Functional Materials,2011,21(12):2282-2290.
[16]Tang S Y,Khoshmanesh K,Sivan V,et al. Liquid metal enabled pump. Proceedings of the National Academy of Sciences,2014,111(9):3304-3309.
[17]桂林,高猛,叶子,等. 液态金属微流体学. 上海:上海科学技术出版社,2021.
[18]Liu J,Sheng L,He Z Z. Liquid metal soft machines:principles and applications,Springer,2019.
[19]刘静. 微米/纳米尺度传热学. 北京:科学出版社,2001.
[20]Lu Y,Hu Q,Lin Y,et al. Transformable liquid-metal nanomedicine. Nature Communications,2015,6:10066.
[21]Ma K,Liu J. Liquid metal cooling in thermal management of computer chips. Frontiers of Energy and Power Engineering in China,2007,1(4):384-402.
[22]Wang W H,Wang J,Tang X Y,et al. Effects of addition small amount high melting point metal on properties of lead-free solders. Electronic Components&Materials,2005,24(9):48-51.
[23]Fang Y,Lu B,Chen C. Effects of alloy composition on microstructure,thermal conductivity and melting point of Cu-Ni-Nb-Mo alloy prepared by vacuum arc-melting. Special Casting&Nonferrous Alloys,2015,35(3):318-321.
[24]Chelikowsky J R,Anderson K E. Melting point trends in intermetallic alloys. Journal of Physics&Chemistry of Solids,1987,48(2):197-205.
[25]Chen S W,Chen P Y,Wang C H. Lowering of SnSb alloy melting points caused by substrate dissolution. Journal of Electronic Materials,2006,35(11):1982-1985.
[26]Yamaguchi A,Yamashita Y,Furusawa A,et al. Properties of solder joints using SnAg-Bi-In solder. Materials Transactions,2004,45(4):1282-1289.
[27]Chen G,Li X,Ma J. The study on the new type lead-free solder alloys Sn-Zn-Ga. Rare Metal Materials and Engineering,2004,33(11):1222-1225.
[28]Endoh T,Kurihara Y. Influence of Pb impurity on melting point and metallography of Sn-5wt%Sb alloy. Electronics&Communications in Japan,2015,81(1):1-12.
[29]Li J B,Meng H J,Pi Z J,et al. Application status and development trends of the lithium primary batteries. Chinese Journal of Power Sources,2018,42(5):725-727.
[30]Zhang Y. Speciation,bioavailability and toxicity of mercury in traditional Chinese medicine. Environmental Chemistry,2011,30(7):1322-1326.
[31]Derevianko A. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks. Physics,2015,93(1):012503.
[32]Xu Z F,Wang Y X. Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation:adsorption and dehydrogenation on Pt3m(m=Pt,Ru,Sn,Re,Rh,and Pd). The Journal of Physical Chemistry C,2011,115(42):20565.
[33]Ozuah P O. Mercury poisoning. Current Problems in Pediatric and Adolescent Health Care,2000,30(3):91-99.
[34]Engleson G,Herner T. Alkyl mercury poisoning. Acta Paediatrica,1952,41(3):289.
[35]Zhang Y,Liao S,Yun X. Highly active alkali metal hydrides:their catalytic syntheses and properties. Journal of Molecular Catalysis,1993,84(3):211-221.
[36]Konovalov é V,Lastov A I,Malumyan I V,et al. Ecologically safe storage for radioactive alkali-metal wastes. Soviet Atomic Energy,1991,70(5):376-379.
[37]Huang Z,Xiao G,Wen W,et al. A“smart”hollandite denox catalyst:self-protection against alkali poisoning. Angewandte Chemie International Edition,2013,52(2):688-692.
[38]Yu Z,Chen Y,Yun F,et al. Simultaneous fast deformation and solidification in supercooled liquid gallium at room temperature. Advanced Engineering Materials,2017:1700190.
[39]Carlson D G,Feder J,Segmüller A. Measurement of the liquid-structure factor of supercooled gallium and mercury. Physical Review A,1974,9(1):400-403.
[40]龚新高. 高温及高压下液体镓的结构——第一性原理分子动力学方法研究. 物理学报,1995,6:885-896.
[41]Gonzlez L E,Gonzlez D J,Stott M J. Covalentlike electronic effects in metallic liquids using an orbital-free ab initio method. Physical Review B,2008,77(1):014207.
[42]Niu H,Bonati L,Piaggi P M,et al. Ab initio phase diagram and nucleation of gallium. Nat Commun,2020,11(1):2654.
[43]Tsai K H,Wu T M,Tsay S F. Revisiting anomalous structures in liquid Ga. J Chem Phys,2010,132(3):034502.
[44]黎文彬. 硅烯、硼烯和CO分子晶体的MBE生长与STM研究(博士学位论文). 北京:中国科学院大学,2018.
[45]Chen S,Wang H Z,Sun X Y,et al. Generalized way to make temperature tunable conductor-insulator transition liquid metal composites in a diverse range. Materials Horizons,2019,6(9):1854-1861.
[46]王焕荣,叶以富,闵光辉. 共晶Ga In合金的液态结构与粘度研究. 金属学报,2001,8:801-804.
[47]America Indium Corporation. Gallium containing indalloy metals. 2021.
[48]Mei Z,Holder H A,Plas H. Low temperature solder. 1996,47:91-98.
[49]Chelikowsky J R,Anderson K E. Melting-point trends in intermetallic alloys. Journal of Physics and Chemistry of Solids,1987,48(2):197-205.
[50]Lindgren E,Westberg G. Radioactive bismuth phosphate for treatment of craniopharyngioma. Acta Radiologica-Therapy Physics Biology,1964,2(2):113-120.
[51]Meijer H C,Beduz C,Mathu F. Thermal contact at very low-temperatures-use of bismuth solder. Journal of Physics E-Scientific Instruments,1974,7(6):424-425.
[52]Playford R J,MacDonald C E. Safety of bismuth. Alimentary Pharmacology &Therapeutics,1996,10(6):1035-1036.
[53]Haneman D. Adsorption and bonding properties of cleavage surfaces of bismuth telluride. Physical Review,1960,119(2):567-569.
[54]Huang X,Yang Z,Li Y. Electroplating of tin-bismuth alloy coating on high silicon aluminum alloy. Electroplating&Pollution Control,2016,36(4):9-12.
[55]America Indium Corporation. Indalloy metal mix Containing bismuth. 2021.
[56]Guisbiers G,Mejía-Rosales S,Leonard Deepak F. Nanomaterial properties:size and shape dependencies. Journal of Nanomaterials,2012,2012:1-2.
[57]Wang Y S,Wang S N,Chang H,et al. Galvanic replacement of liquid metal/reduced graphene oxide frameworks. Advanced Materials Interfaces,2020,7(19):2000626.
[58]Wu B,Xia N,Long D,et al. Dual-functional supernanoparticles with microwave dynamic therapy and microwave thermal therapy. Nano Letters,2019,19(8):5277-5286.
[59]王玉书. 液态金属与碳基材料界面作用机制及应用研究(博士学位论文). 北京:中国科学院理化技术研究所,2020.
[60]Hohman J N,Kim M,Wadsworth G A,et al. Directing substrate morphology via self-assembly:Ligand-mediated scission of gallium-indium microspheres to the nanoscale. Nano Lett,2011,11(12):5104-5110.
[61]Li Z,Zhang H,Wang D,et al. Reconfigurable assembly of active liquid metal colloidal cluster. Angew Chem Int Ed Engl,2020,59(45):19884-19888.
[62]Yan J,Zhang X,Liu Y,et al. Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research,2019,12(6):1313-1320.
[63]Wang Y,Duan W,Zhou C,et al. Phoretic liquid metal micro/nanomotors as intelligent filler for targeted microwelding. Adv Mater,2019,31(51):e1905067.
[64]Wang D,Gao C,Zhou C,et al. Leukocyte membrane-coated liquid metal nanoswimmers for actively targeted delivery and synergistic chemophotothermal therapy. Research,2020,2020:3676954.
[65]常皓. 基于镓基液态金属的微观表/界面行为特性研究(博士学位论文). 北京:中国科学院理化技术研究所,2022.
[66]Tang S Y,Ayan B,Nama N,et al. On-chip production of size-controllable liquid metal microdroplets using acoustic waves. Small,2016,12(28):3861-3869.
[67]Sun X Y,Sun M M,Liu M M,et al. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. Nanoscale,2019,11(6):2655-2667.
[68]Lin Y,Liu Y,Genzer J,et al. Shape-transformable liquid metal nanoparticles in aqueous solution. Chemical Science,2017,8(5):3832-3837.
[69]Yan J J,Zhang X D,Liu Y,et al. Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research,2019,12(6):1313-1320.
[70]Martin A,Kiarie W,Chang B,et al. Chameleon metals:Autonomous nano-texturing and composition inversion on liquid metals surfaces. Angew Chem Int Ed Engl,2020,59(1):352-357.
[71]Gao Y X,Liu J. Gallium-based thermal interface material with high compliance and wettability. Appl Phys A,2012,107:701-708.
[72]Chang H,Guo R,Sun Z,et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Advanced Materials Interfaces,2018,5(20):1800571.
[73]Kim D,Thissen P,Viner G,et al. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces,2013,5(1):179-185.
[74]Zhang J,Sheng L,Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Scientific Reports,2014,4:7116.
[75]Wang D,Wang X,Rao W. Precise regulation of Ga-based liquid metal oxidation. Accounts of Materials Research,2021,2(11):1093-1103.
[76]Sivan V,Tang S Y,O'Mullane A P,et al. Liquid metal marbles. Advanced Functional Materials,2013,23(2):144-152.
[77]Kumar V B,Gedanken A,Porat Z. Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water. Ultrasonics Sonochemistry,2015,26:340-344.
[78]Ren L,Zhuang J,Casillas G,et al. Nanodroplets for stretchable superconducting circuits. Advanced Functional Materials,2016,26(44):8111-8118.
[79]Boley J W,White E L,Kramer R K. Mechanically sintered gallium-indium nanoparticles. Advanced Materials,2015,27(14):2355.
[80]Lin Y,Cooper C,Wang M,et al. Handwritten,soft circuit boards and antennas using liquid metal nanoparticles. Small,2016,11(48):6397-6403.
[81]Tang L,Cheng S,Zhang L,et al. Printable metal-polymer conductors for highly stretchable bio-devices. iScience,2018,4:302-311.
[82]Lear T R,Hyun S H,Boley J W,et al. Liquid metal particle popping:macroscale to nanoscale. Extreme Mechanics Letters,2017,13:126-134.
[83]Kumar V B,Porat Z e,Gedanken A. Dsc measurements of the thermal properties of gallium particles in the micron and sub-micron sizes,obtained by sonication of molten gallium. Journal of Thermal Analysis and Calorimetry,2015,119(3):1587-1592.
[84]Zhang M K,Yao S Y,Rao W,et al. Transformable soft liquid metal micro/nanomaterials. Materials Science&Engineering R-Reports,2019,138:1-35.
[85]Lin Y,Liu Y,Genzer J,et al. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem Sci,2017,8(5):3832-3837.
[86]Gan T,Shang W,Handschuh-Wang S,et al. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating. Small,2019,15(9):e1804838.
[87]Lu Y,Lin Y,Chen Z,et al. Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett,2017,17(4):2138-2145.
[88]Sun X,Cui B,Yuan B,et al. Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor cryoablation and dual-mode imaging. Advanced Functional Materials,2020,30(39):2003359.
[89]Wang X,Li X,Duan M,et al. Endosomal escapable cryo-treatment-driven membrane-encapsulated Ga liquid-metal transformer to facilitate intracellular therapy. Matter,2022,5(1):219-236.
[90]Elbourne A,Cheeseman S,Atkin P,et al. Antibacterial liquid metals:biofilm treatment via magnetic activation. ACS Nano,2020,14(1):802-817.
[91]Liu M,Wang Y,Kuai Y,et al. Magnetically powered shape-transformable liquid metal micromotors. Small,2019,15(52):e1905446.
[92]Mohammed M G,Xenakis A,Dickey M D. Production of liquid metal spheres by molding. Metals,2014,4(4):465-476.
[93]Yu Y,Wang Q,Yi L,et al. Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Advanced Engineering Materials,2013,16(2):255-262.
[94]Thelen J,Dickey M D,Ward T. A study of the production and reversible stability of egain liquid metal microspheres using flow focusing. Lab on A Chip,2012,12(20):3961-3967.
[95]Hutter T,Bauer W A C,Elliott S R,et al. Formation of spherical and non-spherical eutectic gallium-indium liquid-metal microdroplets in microfluidic channels at room temperature. Advanced Functional Materials,2012,22(12):2624-2631.
[96]Kumar V B,Gedanken A,Kimmel G,et al. Ultrasonic cavitation of molten gallium:formation of micro-and nano-spheres. Ultrasonics Sonochemistry,2014,21(3):1166-1173.
[97]裴阳阳,宋青,李鹏. 仿生微纳结构抗菌表面研究进展. 表面技术,2019,48(7):11.
[98]Tripathy A,Sen P,Su B,et al. Natural and bioinspired nanostructured bactericidal surfaces. Advances in Colloid and Interface Science,2017,248:85-104.
[99]Epstein A K,Hong D,Kim P,et al. Biofilm attachment reduction on bioinspired,dynamic,micro-wrinkling surfaces. New Journal of Physics,2013,15(9):095018.
[100]Epstein A K,Hochbaum A I,Kim P,et al. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry. Nanotechnology,2011,22(49):494007.
[101]Kurtjak M,Vukomanovi M,Kramer L,et al. Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity. Journal of Materials Science Materials in Medicine,2016,27(11):170.
[102]Choi S R,Britigan B E,Moran D M,et al. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent mycobacterium tuberculosis in macrophages. PLoS One,2017,12(5):e0177987.
[103]Narayanasamy P,Switzer B L,Britigan B E. Prolonged-acting,multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in coinfected human macrophages. Scientific Reports,2015,5:8824.
[104]Li L,Chang H,Nie Y. Superior antibacterial activity of gallium based liquid metal due to Ga 3+ inducedintracellular ROS generation. Journal of Materials Chemistry B,2020,9(1):85-93.
[105]He B,Du Y,Wang B,et al. Self-healing polydimethylsiloxane antifouling coatings based on zwitterionic polyethylenimine-functionalized gallium nanodroplets. Chemical Engineering Journal,2022,427:131019.
[106]Choi S R,Britigan B E,Narayanasamy P. Ga(iii)nanoparticles inhibit growth of both Tb and HIV and release of il-6 and il-8 in co-infected macrophages. Antimicrobial Agents&Chemotherapy,2017,61(4):AAC. 02505-16.
[107]Soto E R,O'Connell O,Dikengil F,et al. Targeted delivery of glucan particle encapsulated gallium nanoparticles inhibits HIV growth in human macrophages. Journal of Drug Delivery,2016,2016(6851):8520629.
[108]Elbourne A,Cheeseman S,Atkin P,et al. Antibacterial liquid metals:biofilm treatment via magnetic activation. Acs Nano,2020,14(1):802-817.
[109]Wang X L,Liu J,Recent advancements in liquid metal flexible printed electronics:properties,technologies,and applications. Micromachines,2016,7:206.
[110]Rogers J A,Ghaffari R,Kim D H. Stretchable bioelectronics for medical devices and systems. Springer International Publishing,2016.
[111]Boley J W,White E L,Chiu G T C,et al. Direct writing of gallium-indium alloy for stretchable electronics. Advanced Functional Materials,2014,24(23):3501-3507.
[112]Kramer R K,Majidi C,Wood R J. Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Advanced Functional Materials,2013,23(42):5292-5296.
[113]Wang Q,Yu Y,Yang J,et al. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Advanced Materials,2016,27(44):7109-7116.
[114]Zheng Y,He Z Z,Yang J,et al. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep,2014,4(6179):4588.
[115]Mei S,Gao Y,Deng Z,et al. Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil. ASME Journal of Electronic Packaging,2014,136(1):011009.
[116]Fan P,Sun Z,Wang Y,et al. Nano liquid metal for the preparation of a thermally conductive and electrically insulating material with high stability. RSC Advances,2018,8:129-132.
[117]Bark H,Tan M W M,Thangavel G,et al. Deformable high loading liquid metal nanoparticles composites for thermal energy management. Advanced Energy Materials,2021,11(35):2101387.
[118]Yu H W,Zhao W H,Ren L,et al. Laser-generated supranano liquid metal as efficient electron mediator in hybrid perovskite solar cells. Advanced Materials,2020,32(34):2001571.
[119]Sheng L,Zhang J,Liu J. Diverse transformations of liquid metals between different morphologies. Advanced Materials,2014,26:6036-6042.
[120]Wang X L,Guo R,Liu J. Liquid metal based soft robotics:materials,designs and applications. Advanced Materials Technologies,2019,4:1800549.
[121]Xu S,Yuan B,Hou Y,et al. Self-fueled liquid metal motors. Journal of Physics D:Applied Physics,2019,52:353002.
[122]Wang H,Chen S,Yuan B,et al. Liquid Metal Transformable Machines. Acc. Mater. Res. 2021,2(12):1227-1238.
[123]Zhang J,Yao Y Y,Sheng L,et al. Self-fueled biomimetic liquid metal mollusk. Advanced Materials,2015,27:2648-2655.
[124]Sheng L,He Z,Yao Y,et al. Transient state machine enabled from the colliding and coalescence of a swarm of autonomously running liquid metal motors. Small,2015,11(39):5253-5261.
[125]Yuan B,Tan S,Zhou Y,et al. Self-powered macroscopic brownian motion of spontaneously running liquid metal motors. Science Bulletin,2015,60(13):1203.
[126]Zhang J,Guo R,Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. Journal of Materials Chemistry B,2016,4(32):5349-5357.
[127]Liu J. Liquid metal machine is evolving to soft robotics. Science China Technological Sciences,2016,59(11):1793-1794.
[128]Tang J,WangJ,Liu J,et al. Jumping liquid metal droplet in electrolyte triggered by solid metal particles. Applied Physics Letters,2016,108(22):223901.
[129]Zhang M,Zhang P,Wang Q,et al. Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J. Mater. Chem. C,2019,7:10331-10337.
[130]Ou M,Liu H,Chen X,et al. Tunable electromagnetic wave-absorbing capability achieved in liquid-metal-based nanocomposite. Applied Physics Express,2019,12(4):045005.
[131]He B,Liu S,Zhao X,et al. Dialkyl dithiophosphate-functionalized gallium-based liquid-metal nanodroplets as lubricant additives for antiwear and friction reduction. ACS Applied Nano Materials,2020,3(10):10115-10122.
[132]Wang D,Wu Q,Guo R,et al. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for smart embolization. Nanoscale,2021,13(19):8817-8836.
[133]Wang D L,Gao C,Wang W,et al. Shape-transformable,fusible rodlike swimming liquid metal nanomachine. ACS Nano,2018,12(10):10212-10220.
[134]Chechetka S A,Yu Y,Zhen X,et al. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun,2017,8:15432.
[135]Liu H,Yu Y,Wang W,et al. Novel contrast media based on the liquid metal gallium for in vivo digestive tract radiography:a feasibility study. Biometals,2019,32(5):795-801.