干细胞是未分化细胞,能够自我更新和分化成一种或多种功能的细胞。“成体”干细胞,通常称为“祖细胞”,只能分化为它们所在的器官特异性的细胞型。一些器官有成体干细胞的存在,其在疾病或损伤后的修复中起着关键作用。虽然许多年前就假设甲状腺干/祖细胞的存在 [36] ,但近几年才在成人甲状腺中找到支持的证据。
首先在骨髓中发现一群叫侧群细胞(Side Population, SP)的亚群细胞,随后发现存在于各种非造血组织 [37] 。这些细胞的特征是可外排活性染料Hoechst33342,与真正的干细胞有许多相同的特征。SP细胞有助于肝实质的再生或骨骼肌管的形成。甲状腺中也发现SP细胞 [38] ;小鼠中,SP细胞大部分位于滤泡间隙中,少于甲状腺总细胞的1%。SP细胞表达干细胞标志物Oct-4和核干因子(Nucleostemin),而几乎检测不到分化标志物如甲状腺球蛋白(Tg)和甲状腺过氧化物酶(TPO)。此外,只有很少的SP细胞表达C细胞标志物——降钙素。人类结节性甲状腺肿的甲状腺细胞中已分离出SP细胞,并显示与小鼠SP细胞相似的分子特征 [39] 。通常,培养中的SP细胞会进行组织特异性分化。值得注意的是,从正常小鼠甲状腺分离的SP细胞在培养中保持未分化状态,并且不能排列成卵泡样结构。相反,人类SP细胞能够在体内增殖,具有甲状腺表型,对TSH应答。小鼠和人类SP细胞分别来源于正常和甲状腺肿组织,尚不清楚小鼠和人类SP细胞之间的差异是否取决于培养条件不同或细胞来源不同。
除了SP细胞,实性细胞巢(Solid Cell Nests, SCN)的主要细胞也显示许多干细胞的特征。在这些细胞中,不表达生成甲状腺球蛋白或降钙素的基因特异性,而表达端粒酶 [40] 和p63 [41] , p63是常在多层上皮细胞的基底/干细胞中检测到的转录因子。此外,SCN的主要细胞中BCL2的表达增加 [40] ,BCL2是在TFCs中持续表达的抗凋亡蛋白 [42] 。这种分子特征与干细胞的定义相符,提示SCN的主要细胞可能是分化为产生激素细胞的多能干细胞的来源。
人类TFCs更新缓慢,一生约分裂5次 [36] 。因此,人在出生后甲状腺表现为“休眠器官”。然而在动物模型中已经证明,甲状腺在受到严重干扰后(如严重的实验性甲状腺炎 [43] 或甲状腺部分切除术 [44] )可再生和恢复滤泡结构。甲状腺部分切除术后,表达Sca 1(干细胞抗原1)的细胞在术后的几天内增殖 [45] ,该细胞位于甲状腺的非滤泡间质区。
以前的数据似乎表明,甲状腺的再生可能是甲状腺干/祖细胞替换被破坏的滤泡细胞池而增殖和分化的结果。然而,我们目前缺乏甲状腺干细胞存在的确凿证据,不知道这些细胞的生理学和病理学作用。
[1] Werner S. Historical resumè. In: Ingbar S H, Braverman LE, eds. The thyroid[M]. Philadelphia: Lippincott, 1986, 3-6.
[2] Netter F. Anatomy of the thyroid and parathyroid glands[M].The CIBA collection of medical illustrations. Summit, NJ:CIBA Pharmaceutical Products, 1965, 41-70.
[3] 刘树伟.局部解剖学[M].8版.北京:人民卫生出版社,2013.
[4] Sawicki B. Evaluation of the role of mammalian thyroid parafollicular cells[J]. Acta histochemica,1995, 97:389-399.
[5] Yap A S, Stevenson B R, Armstrong J W, et al. Thyroid epithelial morphogenesis in vitro: a role for bumetanide-sensitive Cl- secretion during follicular lumen development[J]. Experimental cell research,1994, 213:319-326.
[6] Bourke J R, Abel K C, Huxham G J, et al. Sodium channel heterogeneity in the apical membrane of porcine thyroid epithelial cells[J]. The Journal of endocrinology, 1996, 149:101-108.
[7] Royaux I E, Suzuki K, Mori A, et al. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells[J]. Endocrinology,2000, 141:839-845.
[8] De Deken X, Wang D, Many M C, et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family[J]. The Journal of biological chemistry,2000, 275:23227-23233.
[9] Paire A, Bernier-Valentin F, Selmi-Ruby S, et al. Characterization of the rat thyroid iodide transporter using anti-peptide antibodies. Relationship between its expression and activity[J]. The Journal of biological chemistry,1997, 272:18245-18249.
[10] Gerard C, Gabrion J, Verrier B, et al.Localization of the Na + /K + -ATPase and of an amiloride sensitive Na + uptake on thyroid epithelial cells[J]. European journal of cell biology,1985, 38:134-141.
[11] Costagliola S, Rodien P, Many M C, et al. Genetic immunization against the human thyrotropin receptor causes thyroiditis and allows production of monoclonal antibodies recognizing the native receptor[J]. Journal of immunology, 1998, 160:1458-1465.
[12] Denker B M, Nigam SK. Molecular structure and assembly of the tight junction[J]. The American journal of physiology,1998, 274:F1-9.
[13] Yap A S, Stevenson B R, Abel K C, et al. Microtubule integrity is necessary for the epithelial barrier function of cultured thyroid cell monolayers[J]. Experimental cell research,1995, 218:540-550.
[14] Munari-Silem Y, Rousset B. Gap junction-mediated cell-to-cell communication in endocrine glands-molecular and functional aspects: a review[J]. European journal of endocrinology / European Federation of Endocrine Societies, 1996, 135:251-264.
[15] Yap A S, Manley S W. Contact inhibition of cell spreading:a mechanism for the maintenance of thyroid cell aggregation in vitro[J]. Experimental cell research, 1993, 208:121-127.
[16] Yap A S, Stevenson B R, Keast J R, et al. Cadherin-mediated adhesion and apical membrane assembly define distinct steps during thyroid epithelial polarization and lumen formation[J]. Endocrinology, 1995, 136:4672-4680.
[17] Yap A S, Manley S W. Thyrotropin inhibits the intrinsic locomotility of thyroid cells organized as follicles in primary culture[J]. Experimental cell research, 1994, 214:408-417.
[18] Yap A S. Initiation of cell locomotility is a morphogenetic checkpoint in thyroid epithelial cells regulated by ERK and PI3-kinase signals[J]. Cell motility and the cytoskeleton, 2001, 49:93-103.
[19] Yap A S, Abel K C, Bourke JR, et al. Differential regulation of thyroid cell-cell and cell-substrate adhesion by thyrotropin[J]. Experimental cell research, 1992, 202:366-369.
[20] Pellerin S, Croizet K, Rabilloud R, et al. Regulation of the three-dimensional organization of thyroid epithelial cells into follicle structures by the matricellular protein,thrombospondin-1[J]. Endocrinology, 1999, 140:1094-1103.
[21] Gartner R, Schopohl D, Schaefer S, et al. Regulation of transforming growth factor beta 1 messenger ribonucleic acid expression in porcine thyroid follicles in vitro by growth factors, iodine, or delta-iodolactone[J]. Thyroid:official journal of the American Thyroid Association, 1997, 7:633-640.
[22] Toda S, Matsumura S, Fujitani N, et al. Transforming growth factor-beta1 induces a mesenchyme-like cell shape without epithelial polarization in thyrocytes and inhibits thyroid folliculogenesis in collagen gel culture[J]. Endocrinology, 1997, 138:5561-5575.
[23] Paire A, Bernier-Valentin F, Rabilloud R, et al. Expression of alpha- and beta-subunits and activity of Na + /K + ATPase in pig thyroid cells in primary culture:modulation by thyrotropin and thyroid hormones[J]. Molecular and cellular endocrinology, 1998, 146:93-101.
[24] Tacchetti C, Zurzolo C, Monticelli A, et al. Functional properties of normal and inverted rat thyroid follicles in suspension culture[J]. Journal of cellular physiology, 1986, 126:93-98.
[25] Gerard A C, Denef J F, Many M C, et al. Relationships between cell division, expression of growth factors and microcirculation in the thyroids of Tg-A2aR transgenic mice and patients with Graves'disease[J]. The Journal of endocrinology, 2003, 177:269-277.
[26] Colin I M, Denef J F, Lengele B, et al. Recent insights into the cell biology of thyroid angiofollicular units[J]. Endocrine reviews, 2013, 34:209-238.
[27] Gerard A C, Poncin S, Caetano B, et al. Iodine deficiency induces a thyroid stimulating hormone-independent early phase of microvascular reshaping in the thyroid[J]. The American journal of pathology, 2008, 172:748-760.
[28] Le Douarin N, Fontaine J, Le Lievre C. New studies on the neural crest origin of the avian ultimobranchial glandular cells—interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors[J]. Histochemistry, 1974, 38:297-305.
[29] Martin-Lacave I, Conde E, Montero C, et al. Quantitative changes in the frequency and distribution of the C-cell population in the rat thyroid gland with age[J]. Cell and tissue research, 1992, 270:73-77.
[30] Suzuki K, Kobayashi Y, Katoh R, et al. Identification of thyroid transcription factor-1 in C cells and parathyroid cells[J]. Endocrinology, 1998, 139:3014-3017.
[31] Kusakabe T, Hoshi N, Kimura S. Origin of the ultimobranchial body cyst: T/ebp/NKX2-1 expression is required for development and fusion of the ultimobranchial body to the thyroid[J]. Developmental dynamics : an official publication of the American Association of Anatomists, 2006, 235:1300-1309.
[32] Meunier D, Aubin J, Jeannotte L. Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant mice[J]. Developmental dynamics :an official publication of the American Association of Anatomists, 2003, 227:367-378.
[33] Martin-Lacave I, Rojas F, Bernabe R, et al. Comparative immunohistochemical study of normal, hyperplastic and neoplastic C cells of the rat thyroid gland[J]. Cell and tissue research, 2002, 309:361-368.
[34] Kameda Y, Oyama H, Endoh M, et al. Somatostatin immunoreactive C cells in thyroid glands from various mammalian species[J]. The Anatomical record, 1982, 204:161-170.
[35] Blaker M, de Weerth A, Tometten M, et al. Expression of the cholecystokinin 2-receptor in normal human thyroid gland and medullary thyroid carcinoma[J]. European journal of endocrinology / European Federation of Endocrine Societies, 2002, 146:89-96.
[36] Dumont J E, Lamy F, Roger P, et al. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors[J]. Physiological reviews, 1992, 72:667-697.
[37] Hussain S Z, Strom S C, Kirby M R, et al. Side population cells derived from adult human liver generate hepatocyte-like cells in vitro[J]. Digestive diseases and sciences,2005, 50:1755-1763.
[38] Hoshi N, Kusakabe T, Taylor B J, et al. Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics[J]. Endocrinology, 2007, 148:4251-4258.
[39] Lan L, Cui D, Nowka K, et al. Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes[J]. The Journal of clinical endocrinology and metabolism, 2007, 92:3681-3688.
[40] Preto A, Cameselle-Teijeiro J, Moldes-Boullosa J, et al. Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests[J]. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, 2004, 17:819-826.
[41] Reis-Filho J S, Preto A, Soares P, et al. p63 expression in solid cell nests of the thyroid: further evidence for a stem cell origin[J]. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, 2003, 16:43-48.
[42] Koga M, Hiromatsu Y, Jimi A, et al. Immunohistochemical analysis of Bcl-2, Bax, and Bak expression in thyroid glands from patients with subacute thyroiditis[J]. The Journal of clinical endocrinology and metabolism, 1999, 84:2221-2225.
[43] Chen C Y, Kimura H, Landek-Salgado MA, et al. Regenerative potentials of the murine thyroid in experimental autoimmune thyroiditis: role of CD24[J]. Endocrinology, 2009, 150:492-499.
[44] Ozaki T, Matsubara T, Seo D, et al. Thyroid regeneration:characterization of clear cells after partial thyroidectomy[J]. Endocrinology, 2012, 153:2514-2525.
[45] Okamoto M, Hayase S, Miyakoshi M, et al. Stem cell antigen 1-positive mesenchymal cells are the origin of follicular cells during thyroid regeneration[J]. PloS one, 2013, 8:e80801.