随着突触可塑性的概念渐渐受到神经科学领域的认可,一种关于增生的更为激进的观点逐渐变得可信。20世纪大部分时间里,科学界坚持信奉大脑是一个在青春期就完全发育成熟的硬件。也就是说,我们出生时的神经元就是我们将来拥有的全部。我们可以随心所欲地重新调整突触,但神经元只会损耗,而且毫无疑问,我们还会加速神经元的衰退。初中的生物老师可能会提出一个观点,这个观点会吓得你未到法定年龄就不敢饮酒,就是:“现在,你给我记住:酒精会杀死脑细胞,而脑细胞是永远不会再生长的。”
你猜结果怎么样?它们真的又生长了——而且达到数千个。科学家逐渐学会了使用那些先进的成像仪器来观察大脑,他们找到了确凿的证据,并在1998年公布了一篇有巨大影响力的论文。这个证据来源于一份不可思议的原始资料。癌症患者有时需要注射一种染色剂,它会出现在增殖癌细胞里,便于跟踪癌细胞的扩散情况。观察那些捐献遗体的晚期癌症患者的大脑时,研究者发现他们的海马也充满了染色标记,这证明神经元就像身体其他细胞一样,正在分裂和增殖——这个过程被称为“神经新生”(neurogenesis)。于是,科学界正式认定它为神经科学领域最大的发现之一。
· 神经新生(neurogenesis)
从神经元干细胞、祖细胞中再生神经元的过程。
曾经,从斯德哥尔摩到南加州,再到普林斯顿,各地的神经学家们都争先恐后要找出我们的新生脑细胞到底有什么作用,因为它的意义是广泛而深远的,帕金森病以及阿尔茨海默病之类的退行性疾病的根本病因便源于神经细胞的死亡和受损。老化本身就包括细胞的死亡,然而我们突然认识到,至少在大脑某些区域中存在一个内部的对抗手段。或许一旦搞清如何快速启动神经新生,我们就能为大脑制造出替换零件。
那么这对健康的大脑来说又意味着什么呢?其中一条关于神经新生的线索来自山雀研究。山雀在每年春天会学习新的鸣叫声,而且在短期内,它们的海马上也显示出新细胞的增生。这是巧合吗?新生的细胞暗示其在学习中起到的某种作用,但我们很难得到这类证据。就像突触可塑性一样,“神经新生显然与我们和环境的相互作用有关,不仅仅在情感上,在认知上也有关系”。加州索尔克研究所(Salk Institute)的神经学家弗雷德·盖奇(Fred Gage)说:“设法弄明白神经新生到底有什么作用,这真的是一个有趣的难题。”1998年,瑞典人彼得·埃里克森(Peter Eriksson)领导了这个关键性研究,而盖奇是和他一起工作的研究人员之一。
新生的神经元是完全空白的干细胞,要经历一个发育过程才能形成神经细胞。在这个过程中,它们必须找到事情做才能生存下来,但大多数都没有成功。 一个新生的细胞要经过 28 天才能加入一个神经网络中。 和已经存在的神经元一样,赫布关于活动依赖性学习的概念将得到应用: 如果不使用新生的神经元,我们就会失去它们。 盖奇重新运用环境优化模型在啮齿目动物身上验证了这个观点。“开始进行这个实验时,我们必须同时处理各种各样的问题。”盖奇说,“我们需要耍手段得到实验结果,但令我们吃惊的是,仅仅在笼子里放一个转轮,就能对新生神经细胞的数量产生显著影响。而讽刺的是,跑步组的神经细胞死亡率和对照组一样,所不同的仅仅是前者的细胞储备库比较雄厚而已。一个神经细胞要生存并加入神经系统中,就必须生长出它的轴突。”运动导致大量神经元产生,而环境优化的刺激则有助于神经元的存活。
新生的神经元是完全空白的干细胞,要经历一个发育过程才能形成神经细胞。在这个过程中,它们必须找到事情做才能生存下来,但大多数都没有成功。一个新生的细胞要经过28天才能加入一个神经网络中。
第一个在神经新生与学习之间建立明确关联的人是盖奇的同事汉丽埃塔·冯·布拉格(Henrietta van Praag)。他们在一个水池中装满不透明的水,水刚刚淹没水池角落里的平台。老鼠不喜欢水,研究者用实验来测试它们对平台的斜坡,即逃生路线的记忆程度如何。研究者对不运动的老鼠和每晚在转轮上跑4~5千米的老鼠进行了比较,结果显示,运动的老鼠记住了在哪里能迅速找到安全地带。虽然两组老鼠的游泳速度相同,但运动的老鼠能径直朝平台游去,而不运动的老鼠则在水中四处乱撞后才找到平台。研究者解剖老鼠后发现, 运动的老鼠海马中新干细胞的数量是不运动的老鼠的两倍。 总结实验结果时,盖奇说:“细胞总数和一只老鼠进行复杂任务的能力之间有显著关系。一旦神经新生受阻,老鼠就无法回忆信息。”
虽然研究对象是啮齿目动物,但我们知道这项研究可能与内珀维尔校区的体育课有一定的关联:体育课为大脑提供学习所需的最佳工具,而课堂上的学习刺激又促使那些新生的神经细胞连接到神经网络中。只有在那里,它们才能成为信号传递系统中的重要成员。神经元被赋予一个使命,通过运动更好地激发长时程增强效应,似乎就会新生出大量的神经细胞,它们都是可塑之材。普林斯顿大学的神经学家伊丽莎白·古尔德(Elizabeth Gould)由此联想到,也许新生神经元在保存我们的有意识思维方面起到了重要作用,而前额叶皮质则决定是否要把这些新神经元连接起来作为一个长期记忆。古尔德是首位证实灵长目动物长出新神经元的研究者,她的研究成果为人类神经新生的实验创造了条件。
她和神经科学领域的其他学者一样,还在分析神经新生和学习之间的关系,而运动已经成为一个重要的实验工具。不过有趣的是,很少有科学家会因为对运动感兴趣而去研究它,正如2006年公布的一份关于海马研究的文章标题所说,他们之所以喜欢让老鼠跑步,是因为运动能“大大促进神经新生”,因此可以让研究人员分析这一过程背后的一系列信号。这也是制药公司制造药物所必需的,他们一直梦想有一种治疗老年痴呆的药丸,能复活神经元以保存完整的记忆。哥伦比亚大学的神经学家斯科特·斯莫尔(Scott Small)在以人为对象的研究中,利用磁共振成像(MRI)跟踪拍摄神经新生现象。他说:“海马里肯定有某种感知运动和语言的化学物质,好吧,让我们开始快速制造新细胞吧!如果确定了那些分子途径,也许我们就能想出聪明的办法,从生化学角度诱导神经新生。”
试想一下,要是他们把运动装进一个瓶子里,会怎样呢?