购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1] Wang J, Sun X. Olivine LiFePO 4 : The remaining challenges for future energy storage [J]. Energy & Environmental Science, 2015, 8 (4): 1110-1138.

[2] Wang Y, He P, Zhou H. Olivine LiFePO 4 : Development and future [J]. Energy & Environmental Science, 2011, 4 (3): 805-817.

[3] Chen C, Zhang Y, Li Y, et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors [J]. Advanced Energy Materials, 2017, 7 (17): 1700595.

[4] Meethong N, Huang H Y S, Speakman S A, et al. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries [J]. Advanced Functional Materials, 2007, 17 (7): 1115-1123.

[5] Legrand N, Knosp B, Desprez P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling [J]. Journal of Power Sources, 2014, 245: 208-216.

[6] Yuan LX, Wang ZH, Zhang WX, et al. Development and challenges of LiFePO 4 cathode material for lithium-ion batteries [J]. Energy & Environmental Science, 2011, 4 (2): 269-284.

[7] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO 4 [J]. Journal of Power Sources, 2001, 97-98: 498-502.

[8] L Laffont, C Delacourt, P Gibot, et al. Study of the LiFePO 4 /FePO 4 two-phase system by high-resolution electron energy loss spectroscopy [J]. Chemistry of Materials, 2006, 18 (23): 5520-5529.

[9] Delmas C, Maccario M, Croguennec L, et al. Lithium deintercalation in LiFePO 4 nanoparticles via a domino-cascade model [J]. Nature materials, 2008, 7 (8): 665-671.

[10] Zhang H, Yang Y, Ren D, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances [J]. Energy Storage Materials, 2021, 36: 147-170.

[11] Jugovic D, Uskokovic D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders [J]. Journal of Power Sources, 2009, 190 (2): 538-544.

[12] Hsieh HW, Wang CH, Huang AF, et al. Green chemical delithiation of lithium iron phosphate for energy storage application [J]. Chemical Engineering Journal, 2021, 418: 129191.

[13] Gupta V, Alam F, Verma P, et al. Additive manufacturing enabled, microarchitected, hierarchically porous polylactic-acid/lithium iron phosphate/carbon nanotube nanocomposite electrodes for high performance Li-Ion batteries [J]. Journal of Power Sources, 2021, 494: 229625.

[14] Wu H, Liu Q, Guo S. Composites of graphene and LiFePO 4 as cathode materials for lithium-ion battery: A mini-review [J]. Nano-Micro Letters, 2014, 6 (4): 316-326.

[15] Li F, Tao R, Tan X, et al. Graphite-embedded lithium iron phosphate for high-power-energy cathodes [J]. Nano letters, 2021, 21 (6): 2572-2579.

[16] Zhang W J. Structure and performance of LiFePO 4 cathode materials: A review [J]. Journal of Power Sources, 2011, 196 (6): 2962-2970.

[17] Jiang L L, Yan C, Yao Y X, et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries [J]. Angewandte Chemie, 2021, 60 (7): 3402-3406.

[18] Edström K, Herstedt M, Abraham P. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries [J]. Journal of Power Sources, 2006, 153 (2): 380-384.

[19] Agubra V A, Fergus J W. The formation and stability of the solid electrolyte interface on the graphite anode [J]. Journal of Power Sources, 2014, 268: 153-162.

[20] 丁晓,薛金花,陈振宇,等.磷酸铁锂电池性能衰退与容量预测模型研究[J].电源技术,2019,43(6):1013-1016.

[21] Azzouz I, Yahmadi R, Brik K, et al. Analysis of the critical failure modes and developing an aging assessment methodology for lithium iron phosphate batteries [J]. Electrical Engineering, 2022, 104 (1): 27-43.

[22] 郭东亮,陶风波,孙磊,等.储能电站用磷酸铁锂电池循环老化机理研究[J].电源技术,2020, 44(11):1591-1593,1661.

[23] Omar N, Monem M A, Firouz Y, et al. Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life model [J]. Applied Energy, 2014, 113: 1575-1585.

[24] Ruiz V, Kriston A, Adanouj I, et al. Degradation studies on lithium iron phosphate-graphite cells. The Effect of Dissimilar Charging-Discharging Temperatures [J]. Electrochimica Acta, 2017, 240: 495-505.

[25] Li R, Wu JF, Wang HY, et al. Reliability assessment and failure analysis of lithium iron phosphate batteries [J]. Information Sciences, 2014, 259: 359-68.

[26] Ceraolo M, Lutzemberger G, Poli D, et al. Experimental evaluation of aging indicators for lithium-iron-phosphate Cells [J]. Energies, 2021, 14 (16): 4813.

[27] Jung D H, Kim D M, Park J, et al. Cycle-life prediction model of lithium iron phosphate-based lithium-ion battery module [J]. International Journal of Energy Research, 2021, 45 (11): 16489-16496.

[28] Sarasketa-Zabala E, Gandiaga I, Martinez-Laserna E, et al. Cycle ageing analysis of a LiFePO 4 /graphite cell with dynamic model validations: Towards realistic lifetime redictions [J]. Journal of Power Sources, 2015, 275: 573-587.

[29] Ouyang D, Wang J. Experimental analysis on lithium iron phosphate battery over-discharged to failure [J]. IOP Conference Series: Earth and Environmental Science, 2019, 257: 012043.

[30] Liu X, Yin L, Ren D, et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode [J]. Nature communications, 2021, 12 (1): 4235.

[31] Song Y Z, Song J, Zhang L, et al. Electrochemical preparation of lithium-rich graphite anode for LiFePO 4 battery [J]. High Energy Chemistry, 2020, 54 (6): 441-454.

[32] Keil P, Schuster S F, Wilhelm J, et al. Calendar aging of lithium-ion batteries [J]. Journal of the Electrochemical Society, 2016, 163 (9): A1872-A1880.

[33] 张明杰,张坚,杨凯,等.磷酸铁锂电池热失控过程中释放能量分析[J].电源技术,2020,44(11):1583-1586,1621.

[34] Liu P, Liu C, Yang K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating [J]. Journal of Energy Storage, 2020, 31: 101714.

[35] 陈天宇,高尚,冯旭宁,等.锂离子电池热失控蔓延研究进展[J].储能科学与技术,2018,7(6):1030-1039.

[36] Feng X, Ren D, He X, et al. Mitigating thermal runaway of lithium-ion batteries [J]. Joule, 2020, 4 (4): 743-770. Z7bDm6nV0oP54cXFnxhK8JlceHk6SsbpeERTSoyGozQ5HtA8YkIGJS+xxEO5Ehcg

点击中间区域
呼出菜单
上一章
目录
下一章
×