购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

4.2 随机波动率能否产生幂律?

我们还没有清晰地定义过幂律,现在可以暂时认为,分布至少满足一阶矩是无限的这个条件。

该问题的答案是:取决于我们是在随机化σ或σ 2 ,还是在随机化

假设从基础的高斯分布出发,也即随机变量 ,下面有几种方法可以使尺度参数σ变得随机。这里要注意,σ是非负数,所以必须采用某种单尾分布。

·我们可以使σ 2 (或者σ)服从对数正态分布。这样一来我们无法得到解析解,但是可以求解矩,且能确定分布无法满足幂律条件。

·我们可以使σ 2 (或者σ)服从伽马分布,这样一来就存在解析解了,如公式4.7所示。

·我们可以使 ——精度参数满足伽马分布。

·我们可以使 满足对数正态分布。

表4.1中的结果是不同概率密度函数和期望操作符的简单叠加,假设X为任意随机变量,其PDF f(.)符合位置-尺度参数的定义。另外有随机变量λ,其PDF为g(.)。X和λ相互独立,因此,以标准的做法,两者的乘积Xλ和两者的比值 的p阶矩如下(通过梅林变换):

这里位置-尺度类分布满足性质 ,比如 (即正态分布),则

表4.2 可能的方差分布的p阶矩 PKyDUw3V734XXKqEBvwuD8GXbmnHc1JM+h3KLfoWI25e8YmkDD7gMQjB6EgtdJRN

点击中间区域
呼出菜单
上一章
目录
下一章
×