购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

热与熵

本章开头我曾写道,宇宙就要这样无休无止地衰退下去,罗素为此大感悲恸。有了第二定律所宣称的熵增,我们大概了解了一点点是什么激发了他做出那么晦暗的预言。把熵增想成是无序程度的增加,你就得其大意了。但是,为了充分认识生命、心灵和物质在未来将要面临的挑战(这个主题我们将在后续章节充分讨论),我们需要在我刚刚阐述的热力学第二定律的现代描述和19世纪中期发展出来的原始阐述之间建立联系。在早期版本中,第二定律把对任何研究蒸汽机的人来说都显而易见的事实变成了规定:燃烧燃料以驱动机器的过程总是会产生热和浪费,即退化。但是,这个早期版本没有提到点算粒子组态的数量,也没有用到概率推理,因此跟我们刚刚建立的对熵增的统计学陈述似乎风马牛不相及。但这两种阐述之间存在着深刻而直接的联系,这种联系也解释了,为什么蒸汽机将高品质的能量转化为低品质的热的过程,证明了宇宙中处处都在发生着退化。

我打算分两步来解释这种联系。首先,我们来看看熵和热之间的关系。接着是第二步,我们将把热和对第二定律的统计学陈述牢牢绑在一起。

抓住煎锅发烫的手柄,你会感觉热好像在往你手上流。但真的有什么在流动吗?很久以前,科学家认为答案是肯定的。他们想象有一种类似流体的物质,叫作“热质”,会从较热的地方流向较冷的地方,就像水往低处流那样。后来,对物质成分有了更精微的理解,对这个问题也就有了不同的描述。你握着煎锅手柄时,手柄中快速运动的分子撞击你手上慢速运动的分子,平均而言会让你手上分子的速度变快,让手柄上分子的速度变慢。手上分子的运动速度增加,你感觉到的就是温热:手上的温度增加了。相应地,手柄上分子的速度变慢,意味着手柄温度下降。因此,流动的并不是某种物质。手柄上的分子仍然留在手柄上,你手上的分子也仍然在你手上。实际上就像传话游戏中信息从一个人流向下一个人一样,在你握住手柄时,是分子的骚动从手柄中的分子流向了你手上的分子。因此,虽然物质本身并没有从手柄流向手,但物质的一种性质——分子的平均速度——流动了。这就是我们说的“热流”。

同样的描述也适用于熵。你手上的温度升高时,分子弹来撞去得也更快了,其速度的可能范围也扩大了,即看起来几乎一模一样的可行组态数量增加了,因此你手上的熵也增加了。相应地,因为手柄温度降低,分子运动得更慢,其速度的可能范围也缩窄了,即看起来几乎一模一样的可行组态数量减少了,因此手柄的熵也减少了。

哇,熵 减少 了?

对。但这跟统计学中罕见的偶然现象毫无关系,并不是我们在上节描述过的,倒出一袋硬币发现全都正面朝上的那种情形。每回你握住炽热的手柄,它的熵都会减少。煎锅的例子表明了很简单但也很关键的一点:第二定律宣称的熵增指的是一个完整物理系统的 熵,该系统必须包括与之相互作用的所有事物。由于你的手跟锅柄有相互作用,你就不能单单对锅柄应用第二定律,而必须把手柄和手都包括进去(当然更准确地说还要包括整个煎锅、炉灶、周围的空气等等)。严格计算可以表明,你手上熵的增加值超过煎锅手柄上熵的减少值,这就确保了总熵确实上升了。

因此,就跟热一样,某种意义上,熵也能流动。对煎锅来说,熵是从手柄上流到你手上;手柄变得更有序了一点,而手的有序程度有所降低。同样地,这种流动并不是以一种看得见摸得着的物质形式呈现,仿佛真有什么一开始在手柄中,现在移动到你手上了一样。与此相反,熵的流动指示的是手柄中的分子和你手上的分子之间的相互作用,这种相互作用影响了双方分子的特性。这里,相互作用改变了分子的平均速度,即双方的温度,进而影响了双方各自所含的熵。

此番描述表明,热的流动和熵的流动联系密切。吸热就是吸收分子的随机运动中携带的能量。这些能量接着就会让获得能量的分子运动更快或散布更广,从而有助于熵的增加。因此结论就是,要让熵由此及彼地转移,就需要热也由此及彼地流动。而当热由此及彼流动,熵也就由此及彼地转移了。一句话,熵乘热流之势而动。

对热与熵的相互关系有了此种理解后,我们再来看看第二定律。 HB5FbJSlkA8jlKokXxgpp+NG3I4+pHEJzKDZ8JNRUVeYwesp/tBp7eeWQ5ZdgNod



热与热力学第二定律

要解释为什么我们经历的事件都只在一个方向上展开而不会反过来,会让我们想到玻尔兹曼和他统计学版本的第二定律:朝向未来时,熵增的可能势不可当,这就让反向序列(熵可能减少的序列)发生的可能极小。这种表述跟对熵的早期阐述有什么关系呢?要知道早期版本是受蒸汽机的启发,说的是物理系统不断产生废热的过程。

二者的关系是各自的出发点——可逆性和蒸汽机——紧密相连。原因在于蒸汽机依赖着一个循环过程:活塞被膨胀的蒸汽向外推出,随后又回到初始位置,等待下一次外推。蒸汽也跟蒸汽机几乎所有重要部件一样回到初始体积、温度和压力,让蒸汽机准备好再次受热并推动活塞。虽然这一切都并不要求每个分子循着来路回去完全一样的位置,也不要求每个分子都具有跟前一轮循环开始时同样的速度——想如此发展几乎全无可能;但这个过程确实要求总体排列,即蒸汽机的宏观态回复相同状态,好启动后续循环。

这对熵来说意味着什么呢?嗯,熵是呈现同一宏观态的微观态组态的数量,因此如果蒸汽机的宏观态在每次循环开始时都复原了,那么蒸汽机的熵必定也复原了。这就意味着,蒸汽机在一次循环中得到的熵,在循环结束时必定全都排放到了环境中(蒸汽机会从燃烧的燃料中吸热,其运动部件的摩擦则会产生额外的热,等等)。蒸汽机怎样才能做到这一点?那,我们已经知道,要传递熵,就必须传递热。因此,要让蒸汽机复原以进行下一次循环, 就必须向环境放热 。这就是热力学第二定律的历史陈述,向环境中排出废热不可避免——正是这种退化让罗素感到不堪重负——现在它是从第二定律的统计学版本中推导出来的。 [16]

这就是我想到达的目的地。所以你大可直接跳到下一节。但如果你还有耐心,那还有个细节我要是不提就是我的不对了。你可能会想,如果蒸汽机从燃料燃烧中吸热(因此也吸收了熵),却只是为了向环境中放热(同时也释放了熵),那又怎么还会有剩余的能量去完成有用的任务,比如驱动机车?答案是,蒸汽机释放的热比吸收的要少,同时也仍然能完全排出在循环中积累的熵。是这么回事:

蒸汽机从燃烧的燃料中吸收热和熵,并向温度更低的环境释放热和熵。燃料和环境之间的温差是关键。想知道原因,我们先设想你打开了两台完全一样的电暖气,但一台所在的房间非常冷,另一台所在的房间则很热。在寒冷的房间里,冷空气分子受暖气的推挤,于是运动变快,也分散得更开,因此这些分子的熵会显著增加。在炎热的房间里,空气分子本来就运动很快、分得很开,因此暖气只能稍微增加这些分子的熵(就有点儿像在一个跨年狂欢趴上推高节奏,几乎注意不到狂欢者的舞步有没有变快一点,但如果在藏传佛教的提克西寺推高拍子,诱使那些僧侣打破静修跳起狂派舞,那你很容易就能看到变化)。因此,就算两台电暖气一模一样,二者向环境传递的熵却很不相同:二者都产生了等量的热,冷房间里的暖气却传递了更多的熵。所以,较冷的环境尽管接收到的热量相同,但能放大熵增。有了这个认识,我们就能看到,蒸汽机只须释放部分的热到更冷的环境中,就能把从燃料燃烧中得到的熵全都排掉。这样剩下的热量就能用来使蒸汽膨胀,推动活塞,完成有用功。

道理就是这样,不过别一叶障目,让细节挡住了重要结论:随着时间流逝,物理系统会以极大可能从低熵组态向高熵组态演化。如果一个像蒸汽机这样的系统想保持结构完整,就必须通过将积累的熵传递到环境中来消除熵增的自然趋势。要做到这一点,蒸汽机就必须向环境排放废热。 HB5FbJSlkA8jlKokXxgpp+NG3I4+pHEJzKDZ8JNRUVeYwesp/tBp7eeWQ5ZdgNod

点击中间区域
呼出菜单
上一章
目录
下一章
×