均衡的概念是不是同时行动的博弈中循环推理问题的一个完全解?老天爷,不是的。有些博弈存在好几个均衡,有些博弈却一个均衡也没有,而在另外一些博弈里,均衡的概念还会由于接纳新型策略而变得更加微妙。我们现在就来描述和解释这几点。
开车的时候你应该走哪一边?这个问题不能通过运用优势策略或者劣势策略理论予以回答。不过,即便如此,答案却显得很简单。假如别人都靠右行驶,你也会留在右边。套用“假如我认为他认为”的框架进行分析,假如每个人都认为其他人认为每个人都会靠右行驶,那么每个人都会靠右行驶,而他们的预计也全都确切无误。靠右行驶将成为一个均衡。
不过,靠左行驶也是一个均衡,正如在英国、澳大利亚和日本出现的情况。这个博弈有两个均衡。均衡的概念没有告诉我们哪一个更好或者哪一个应该更好。假如一个博弈具有多个均衡,所有参与者必须就应该选择哪一个达成共识,否则就会导致困惑。
在开车行驶的例子里,一条早已制定的规则给了你答案。不过,若是遇到彼得(Peter)和波拉(Paula)打电话打到一半突然断了的事,你该怎么办?一方面,假如彼得马上再给波拉打电话,那么波拉应该留在电话旁(且不要给彼得打电话),好把自家电话的线路空出来。另一方面,假如波拉等待彼得给她打电话,而彼得也在等待,那么他们的聊天就永远没有机会继续下去。一方的最佳策略取决于另一方会采取什么行动。这里又有两个均衡,一个是彼得打电话而波拉等在一边,另一个则是恰好相反。
这两个人需要进行一次谈话,以帮助他们确定彼此一致的策略,也就是就应该选择哪一个均衡达成共识。一个解决方案是,原来打电话的一方再次负责打电话,而原来接电话的一方则继续等待电话铃响。这么做的好处是原来打电话的一方知道另一方的电话号码,反过来却未必是这样。另一种可能性是,假如一方可以免费打电话,而另一方不可以(比如彼得是在办公室而波拉用的是收费电话),那么,解决方案是拥有免费电话的一方应该负责第二次打电话。
为了检验读者协调达成一个均衡的能力,请思考下面的问题:明天某个时候你要在纽约市会见某人。他已被告知要与你会面。不过,双方都没有更多信息,不知道究竟何时或者在哪里会面。那么,你应该于何时去何地?
托马斯·谢林在他的《冲突策略》一书里使这个问题家喻户晓。这个问题只有通常最常见的答案,除此之外没有任何预先确定的正确答案。在我们的学生当中,正午时分在中央车站一直是最常见的答案。即便是普林斯顿的学生,虽然他们乘坐的到纽约的火车是在宾州车站而非中央车站停,他们的答案也是一样。
另一个复杂因素在于,并非所有博弈都有我们前面描述的那种均衡,哪怕是一个。在导弹截击的故事里,余下4个结果没有一个是均衡。举个例子,我们看看伊拉克I1策略遇到美国A4策略的情况。这一策略组合的结果是反导弹没能拦截导弹,假如美国转向A8策略,情况就会大不一样。不过,那样的话伊拉克就该转向I5策略,而美国反过来也要转向A4策略,伊拉克则相应转向I1策略,依此类推。关键在于,如果一方坚守某种确定行为,另一方就会因此大占便宜。双方唯一明智的做法在于随机选择自己这一步怎么走。实际上,导弹截击问题具有很强的对称性,以至正确的策略组合简直是显而易见的:美国的策略应该随机地“一分为二”,一半时间选择A4策略,另一半时间选择A8策略,伊拉克则以同样的概率选择I1和I5策略。
这种“混合策略”即便在双方打算合作的时候也会出现。在前面提到的打电话的例子中,设想双方都抛硬币决定自己是不是应该给对方打电话,根据前面给出的条件,两人这种随机行动的组合成为第三个均衡:假如我打算给你打电话,我有一半机会可以打通(因为这时你恰巧在等我打电话),还有一半机会发现电话占线;假如我等你打电话,那么,我同样会有一半机会接到你的电话,因为你有一半机会主动给我打电话。每一个回合双方完全不知道对方将会采取什么行动,他们的做法实际上对彼此都最理想。因为我们只有一半机会重新开始被打断的电话聊天,我们知道我们(平均来说)要尝试两次才能成功接通。
而在其他博弈中,各方应该按照什么概率采取不同策略的答案却没有这么明显。在第7章我们会建立一套法则来确定什么时候需要采取混合策略,还会介绍一个找出正确的概率组合的方法。
我们现在简要回顾一下。在同时行动的博弈中,我们有三个行动法则: 一是寻找和运用优势策略;二是寻找和避免劣势策略,与此同时假设你的对手也在这么做;三是寻找和运用均衡。 在本章结束之际,我们来看一个案例,这个案例向我们展示了这些指导法则是怎样转化为实际行动的。