无论在商界还是在国际政坛,参与各方经常通过讨价还价或者谈判来决定总收益这个“蛋糕”应该怎样划分。我们将在第11章更详细地探讨这一现象。现在我们把它当做一个形象的例子,解释倒后推理这一方法怎样使我们得以预见相继行动的博弈的结果。
大多数人基于社会常识,预测一场谈判的结果就是妥协。这样做的好处是能够保证“公平”。我们可以证明,对于许多常见类型的谈判,一个50对50的妥协也是倒后推理的结果。
首先,我们必须认识讨价还价的两个普遍特征。我们必须知道谁向谁提出了一个什么条件,换言之,就是这个博弈的规则是什么;接着,我们还要知道,假如各方不能达成一个协定,将会导致什么后果。
不同的谈判按照不同的规则进行。在大多数零售店里,卖方会标出价钱,买方的唯一选择就是要么接受这个价格,要么到别的店里碰运气。 这是一个简单的“接受或者放弃”的法则。而在工资谈判的例子中,工会首先提出一个价码,接着公司决定是不是接受。假如公司不接受,可以还一个价码,或者等待工会调整自己要求的价码。有些时候,相继行动的次序是由法律或者习俗决定的,还有些时候这一次序本身就具有策略意义。接下来,我们会探讨一个讨价还价的问题,在这个问题里,双方轮流提出条件。
谈判的一个必不可少的特征在于时间就是金钱。假如谈判越拉越长,蛋糕就会开始缩水。不过,这时各方仍然可能不愿意妥协,暗自希望只要谈成一个对自己更加有利的结果,其好处就将超过谈判的代价。查尔斯·狄更斯(Charles Dickens)的《荒凉山庄》(Bleak House)描述了一个极端的情形:围绕贾恩迪斯山庄展开的争执变得没完没了,以至于最后整个山庄不得不卖掉,用于支付律师们的费用。按照同样的思路,假如因不能达成工资协定而引发罢工,那么公司就会失去利润,工人就会失去工作。假如各国陷入一轮旷日持久的贸易自由化谈判,它们就会在争吵收益分配的时候丧失贸易自由化带来的好处。这些例子的共同点在于,参与谈判的所有各方都愿意尽快达成协议。
在现实生活中,收益缩水的方式非常复杂,不同情况的缩水比例也不同。不过,我们可以用一种非常简单的方法充分阐明这一点:假设每提出一个建议或反建议,蛋糕都会朝零的方向缩小同样大小;设想这是一个冰激凌蛋糕,孩子们一边争吵怎么分配,蛋糕一边融化。
首先,假设整个过程总共只有一步。桌子上放了一个冰激凌蛋糕;一个孩子阿里(Ali)向另一个孩子巴巴(Baba)提议应该如此这般分配。假如巴巴同意,他们就会按照提议分享这个蛋糕;假如巴巴不同意,蛋糕融化,谁也吃不到。
现在,阿里处于一个强有力的地位:她使巴巴面临有所收获和一无所获的选择。即便她提出自己独享整个蛋糕,只让巴巴在她吃完之后舔一舔切蛋糕的餐刀,巴巴的选择也只能是舔一舔,否则他什么也得不到。
当然,巴巴可能因为感到这么分配太不公平而生气,断然拒绝接受这一条件。又或者,他可能希望建立或者保持自己作为一个不好对付的讨价还价者的形象,从而为日后的讨价还价奠定基础,而日后的讨价还价可能是跟阿里进行,也可能是跟其他得知今天自己所作所为的孩子们进行。在实际操作当中,阿里同样需要考虑到这些问题,要向巴巴放出刚好足够的诱饵(比如一小块蛋糕),引诱他上钩。为简化阐述过程,我们将所有这些复杂问题搁在一边,假设阿里可以拿走她所要求的100%的份额。实际上,我们还可以不考虑留给巴巴舔的餐刀,假定阿里有能力提出“接受或者放弃”的条件,她可以得到整个蛋糕。
一旦出现第二轮谈判,局势就会大大偏向巴巴。不妨再设想一下,现在桌子上放了一个冰激凌蛋糕,但是两轮谈判过后,整个蛋糕就会融化。假如巴巴拒绝接受阿里提出的条件,他可以提出一个反建议,不过,到这时,桌子上只剩下半个蛋糕了。假如阿里拒绝接受巴巴的反建议,剩下的半个蛋糕也会融化,双方都会一无所获。
现在,阿里必须向前展望她最初提出的条件会有什么后果。她知道,巴巴可以拒绝她的条件,从而占据有利地位,反过来就剩下的半个蛋糕提出“接受或者放弃”的分配方案。这实际上意味着巴巴已经将那半个蛋糕掌握在自己手里。因此,他不会接受任何低于阿里第一轮条件的反建议。假如阿里不能阻止这一幕发生,她将一无所获。一旦看清了这一点,她会从一开始就提出与巴巴平分这个蛋糕,这正是刚好足够引诱对方接受而又为自己保有一半收益的条件。于是他们会马上达成一致,平分这个蛋糕。
说到这里,个中原理已经非常清楚,我们的讨论还可以再进一步。分析结果是相同的:要么加速谈判进程,要么延缓蛋糕融化速度。随着谈判各方提出每个建议和反建议,蛋糕也在融化,从一个变成2/3再变成1/3,直到零,什么也剩不下。假如阿里提出最后一个建议,而蛋糕已经融化到只有1/3,她就可以全部拥有。巴巴知道这一点,所以在轮到自己提条件的时候(这时蛋糕还剩下2/3)许诺分给她1/3。这么一来,巴巴可以得到的最好结果就是1/3个蛋糕,即剩下的2/3的一半。阿里知道这一点,所以从一开始就许诺分给巴巴1/3(刚好足够引诱对方接受),自己得到2/3。
各得一半的分配方案存在什么规律吗?每一次的步骤数目都是偶数,且这一现象反复出现。更重要的是,即便步骤数目是奇数,随着步骤数目增加,双方也会越来越接近一半一半的分配方案。
若是四步,巴巴得以提出最后一个条件,从而得到这个时候桌子上剩下的1/4个蛋糕。因此,阿里必须在倒数第二轮提出分给巴巴1/4个蛋糕,当时桌子上还剩下半个蛋糕。而在此前一轮,巴巴可以让阿里接受分给她剩下的3/4个蛋糕中1/4个蛋糕的条件。因此,一路这么向前展望下去,在讨价还价一开始,阿里就应该提出分给巴巴半个蛋糕,自己得到另一半。
若是五步,阿里一开始可以提出分给巴巴2/5个蛋糕,自己得到3/5。若是六步,那么分配方案又回到各得一半。若是七步,阿里得到4/7,巴巴得到3/7。更为普遍的情况是:假如步骤数目是偶数,各得一半;假如步骤数目n是奇数,阿里得到 ,而巴巴得到 。等到步骤数目达到101,阿里可以先行提出条件的优势使她可以得到51/101个蛋糕,而巴巴得到50/101个。
在这个典型的谈判过程中,蛋糕缓慢缩小,在全部融化之前有足够时间让人们提出许多建议和反建议。这表明,通常情况下, 在一个漫长的讨价还价过程中,谁第一个提出条件并不重要。 除非谈判长时间陷入僵持状态,胜方几乎什么都得不到了,否则妥协的解决方案看来还是难以避免的。不错,最后一个提出条件的人可以得到剩下的全部成果。不过,真要等到整个谈判过程结束,大概也没剩下什么可以赢取的了。得到了“全部”,但“全部”的意思却是什么也没有,这就是赢得了战役却输掉了战争。
我们必须看到很重要的一点:虽然我们考虑过许多可能的建议和反建议,预期结果却是阿里的第一个条件能够被对方接受。谈判过程的后期阶段不会再发生。不过,假如第一轮不能达成一致,这些步骤将不得不走下去,这一点在阿里盘算怎样提出一个刚好足够引诱对方接受的第一个条件时非常关键。
这个观察结果反过来提示了另一种讨价还价策略。向前展望,倒后推理的原理可能在整个过程开始之前就已经确定了最后结果。策略行动的时间可能提前,在确定谈判规则的时候就已经开始。
同样的观察结果还会引出一个谜。假如讨价还价的过程真像这里阐述的那样,应该不会出现罢工。当然,罢工的可能性会影响最终达成的协议,不过公司会把握第一个提条件的机会,提出一个刚好足以引诱对方接受的条件,工会也会这样做。罢工变成现实,或者更普遍的情况,即谈判破裂,一定是现实生活更微妙或者更复杂的特征引出的结果,而这些特征早已从上述这个简单的故事中排除出去,未予考虑。我们会在第11章探讨其中一些问题。