购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

第二节
结核病病原体和发病机制

一、结核病病原体

肺结核具有传染性,希腊时代即已知道。其后意大利的Fracastoro(公元1483—1538年)在论文《接触传染病及其治疗》中描述完全康复者与肺结核患者一起居住可不发病,指出患者的衣服2年后仍有传染性,使用患者衣服可传染结核病。

意大利的K.Marten 1720年提出,肺结核是由眼睛看不到的小生物引起,并发表有关论文。1751年,西班牙国王Ferdinand六世出台结核病预防法,规定结核病患者要报告并烧掉其使用的衣物、家具等。1753年,佛罗伦萨出台同样法令,规定结核病患者使用的衣物和家具都要烧毁,以达到消毒目的。虽然那不勒斯、西西里亚、葡萄牙、普罗旺斯等也都同样出台结核病预防法,但肺结核患者并没有减少,而这类法令也没有被遵守。

Roziere认为肺结核的传染是由患者痰液引起的。但用结核病患者的痰标本进行动物实验并成功的是法国的Klenke(公元1843年),其将患者标本注入家兔静脉,在肺、肝脏内发现结核结节,然而因为只使用了一只家兔而未被重视。法国的Villemin(公元1827—1892年)用家兔从耳缘静脉接种结核病理材料,3个半月后在家兔腹腔发现小黄点,肺内也发现结核性病变;其后进行了各种动物实验,并证明豚鼠为最佳实验动物,证实患者痰中有病原体。而且对结核病病牛的标本也进行了实验,结果相同。但当时Villemin的报告遭到一些人的反对,特别是法国国内多数人的反对。此时英国政府关心这个报告,枢密院派遣Buidon-Sanerson和Simon等到法国研究、学习了这一方法。两人回到英国后,用豚鼠反复进行实验,最终确认了Villemin的报告,1879年Chauvean再次证明Villemin实验的正确性并做了报告。这是结核病首次被科学地证明为传染病。

Koch(公元1843—1910年)在碱性亚甲蓝液中长时间染色,俾斯麦棕(碱性染料)复染,成功地染出特有的杆菌,继而进行动物实验,分离培养,培养菌动物接种成功。1882年3月24日发表了这一结果,从此,结核病是由结核分枝杆菌引起的传染病就确定无疑了。

“无结核分枝杆菌就不会发生结核病”这一点是清楚的。可是,人类结核病仅仅用感染结核分枝杆菌还有很多说明不了的问题,如Fracastoro和其他一些研究者所说,“与肺结核患者长期接触的人容易得病”这是事实,可是也有像Laennec所说“夜间与肺结核患者同室居住的家属、与患肺结核的妻子终身同床的丈夫一直没有感染结核病者甚多”也是事实。Koch在发表历史性成绩时,还不知道自己被结核分枝杆菌感染,其后Koch在自己皮下注射结核菌素(以下简称结素)出现严重反应时,才知道自身已感染结核分枝杆菌。

与其他传染病类似,结核病的病原体是结核分枝杆菌,而结核病的发生还有一些其他因素参与。即受结核分枝杆菌侵入之个体,由于先天性和后天性的抵抗力、生活环境不同而有很大差异。从这一意义讲,古人提出遗传问题和所谓“瘴气”和生活环境,绝对不能说没有根据,应当说建立近代结核病学观点也不能不考虑。

二、结核病的发病机制

全球范围内,结核病病因包括结核分枝杆菌传播和结核潜伏感染的活化。绝大部分结核病病例应归因于(狭义的)结核分枝杆菌或与其关系密切的非洲分枝杆菌;一小部分病例则由可致人畜共患疾病的结核分枝杆菌复合群引发,如牛分枝杆菌(Mycobacterium bovis)或山羊分枝杆菌(Mycobacterium caprae)。结核分枝杆菌没有环境宿主,人类是已知的唯一宿主。因此,该菌既是病原体又是共生物。

未感染的人群一旦受到结核分枝杆菌传染,具有普遍的易感性。进入呼吸道的结核分枝杆菌微滴核可被鼻、咽、喉、气管和支气管的黏液吸附、被酶杀灭并随纤毛运动,经咳嗽、打喷嚏和咳痰等排出体外,或被吞噬细胞吞噬杀灭。当防御功能低下时,结核分枝杆菌进入下呼吸道,引起机体反应。结核病的免疫主要是细胞免疫,表现为淋巴细胞的致敏与吞噬细胞功能的增强。另外,结核分枝杆菌侵入人体后,结核分枝杆菌及其代谢产物也可激发机体迟发型超敏反应。入侵结核分枝杆菌的数量、毒力及人体免疫力、超敏反应的高低,决定感染后结核病的发生、发展与转归结果。人体抵抗力低下时,结核病常易于发展蔓延;反之,感染后不易发病,即使发病亦较轻,且易治愈。

人体(通常为儿童)肺部首次感染结核分枝杆菌后,细菌被吞噬细胞携至肺门淋巴结,并可发生全身播散;若此时机体免疫力低下,可能发展为全身性结核病,多表现为原发综合征和血行播散性肺结核。成人已具备一定的免疫力,再次感染结核分枝杆菌后,会在再感染的局部发生剧烈的炎性反应,病灶多为渗出性,甚至干酪样坏死、液化而形成空洞;病灶部位多在肺尖附近,一般不波及淋巴结,亦很少引起血行播散。

在感染的起始期,结核分枝杆菌主要通过呼吸道进入宿主体内,侵染宿主的巨噬细胞,成功感染巨噬细胞后,结核分枝杆菌和宿主巨噬细胞处于一个动态过程:一部分结核分枝杆菌会被杀灭,同时它们也会杀灭部分宿主巨噬细胞。在T细胞反应期,带有结核分枝杆菌的抗原提呈细胞(APC)激活特异性T淋巴细胞反应。由T淋巴细胞介导的细胞免疫反应和迟发型超敏反应(DTH)在此阶段形成,从而对临床结核病的发病、演变及转归产生决定性影响。在结核分枝杆菌感染的共生期,结核分枝杆菌感染宿主后,通过巨噬细胞的吞噬作用和抗原加工提呈,刺激淋巴特异性T细胞在肺内形成细小的肉芽肿,在结核分枝杆菌滞留和宿主防御之间形成一个动态平衡,达到共生状态。该平衡可一直存在,以至于感染者终身不发病,只有不到10%的感染者会最终发展成临床疾病。在结核分枝杆菌感染的细胞外繁殖和传播期,结核分枝杆菌能够通过空洞性病灶进行大量增殖和播散,通过飞沫、唾液等多种形式进行播散,感染新的宿主。

1.潜伏感染

广义而言,接触结核分枝杆菌可导致两种后果:病原体被消灭和病原体持续存在。第一种情况下,病原菌或被人体先天免疫系统消灭(此时,结核菌素皮肤试验或γ-干扰素释放试验结果可能为阴性),或被后天免疫系统消灭(此时结核菌素皮肤试或γ-干扰素释放试验结果可能为阴性或阳性,取决于记忆T细胞是否已经接触过抗原)。然而,如果接触到的结核分枝杆菌没有被消灭,病原菌就可能保持静止或潜伏状态,而且典型情况下感染者会出现结核菌素皮肤试和γ-干扰素释放试验测试阳性(但没有症状)。

2.活动性肺结核

对于大多数结核潜伏感染者,巨噬细胞、树突状细胞和 T细胞的组合已经足够将感染状态控制住,并维持无症状体征。然而,小部分感染者能发展成临床意义上的活动性肺结核,这个过程少则几周,多至数年,发病原因至今尚未完全清楚。

从细菌学角度而言,病情发展的重要因素之一是出现完整的抗原蛋白。研究者预测,部分结核分枝杆菌基因会参与生产免疫显性CD4 + T细胞的抗原;而对临床分离物的基因组研究显示,这部分基因并不因为菌株和谱系而发生变化,意味着人体内抗原特异性T细胞的激活可能对结核分枝杆菌有好处。

从宿主角度而言,三项流行病学自然试验已经证实活动性结核病的风险,并因此指出感染控制的关键途径:HIV、肿瘤坏死因子(TNF)中和抗体和先天免疫缺陷。总之,遗传易感性可能部分解释为什么有些潜伏感染者会发展成活动性结核病,但是,若要精准控制结核分枝杆菌感染的人体免疫路径,仍需开展进一步研究。 WrnOUUoM/eq/1nErx6ucazX8dBrsRRwo+iXEfYqhikyFZ0twh4COyF60WIJjcHIC



第三节
结核病诊断方法进展

一、潜伏感染的诊断方法

目前,有两种试验可以诊断结核潜伏感染:结核菌素试验(TST)和γ-干扰素释放试验(IGRA)。IGRA 试验也可用来区分BCG注射与结核分枝杆菌感染引发的阳性反应。

1.结核菌素试验(TST)

TST 试验(使用 MANTOUX 技术)是皮内注射 5 结核菌素单位(TU)的纯化蛋白质衍化物 PPD-S,或 2TU 的 PPD-RT23。若受试者对这些抗原有细胞介导的免疫应答,则会在 48~72 小时内出现迟发型超敏反应。对 TST 测试结果的解读要考虑到硬结大小和结核分枝杆菌感染的预测概率;若受试者已经明确感染结核分枝杆菌,还要考虑到其发展为活动性结核病的风险。

TST检测的优点是试剂和设备成本低、对实验室和操作人员技术水平要求低。缺点一是特异性会受以下因素影响而减低:卡介苗的晚期(6月龄以上婴儿)接种或反复接种(加强免疫接种),以及一定程度上与非结核分枝杆菌的接触;缺点二是该测试结果的预测值有限。绝大部分TST阳性的患者都没有发展为活动性结核病。

2.γ-干扰素释放试验(IGRA)

IGRA 是体外血液测试,检测细胞介导的免疫反应:测量在 RD1 编码抗原ESAT-6和CFP-10的刺激之下,T 细胞释放的 IFN-γ。相比PPD 抗原,RD1 抗原对结核分枝杆菌的特异度更高,因为其不在任何 BCG 疫苗菌株的基因组内,绝大部分非结核分枝杆菌中也不包含。然而,和 TST 一样,IGRA 预测值也较低。对于诊断结核潜伏感染而言,TST 和IGRA 都可接受、可操作,但都存在各自的优缺点。针对免疫功能低下的患者,其灵敏度明显减低;而且,两种检测方法都不能准确区分结核潜伏感染和活动性结核病,也无法鉴别患者是初次感染还是再感染。在某些地区,曾接受过预防性治疗的患者有再感染风险,而此时,区分初次感染和再感染十分重要。

值得注意的是,因为所有的结核潜伏感染诊断都存在预测值较低这个问题,对低风险人群的大范围预筛查会适得其反。因此,只有在确定出现阳性结果准备开展相关治疗的情况下,才应开展结核潜伏感染的筛查。

二、活动性肺结核的诊断方法

诊断活动性肺结核主要有以下几种技术:胸部影像学技术(胸部X线、CT)、支气管镜及其他内镜检查、痰涂片显微镜检查(痰涂片)、痰样本培养、分子生物学检测。其中,影像学技术主要用于筛查,而确诊必需有病原学的诊断结果。

胸部X线技术是已稳定应用的筛查技术,而且,近年来也出现了数字影像技术和电脑辅助诊断软件等相关技术。因为X线技术特异性低,异常胸部X线片需要和后续的显微镜检验技术相结合。先进的成像方式(如CT、PET-CT)能够看到肺部病变的不同形态,但此类技术费用昂贵,不适宜常规检查使用。支气管镜检查可直接观察气管、支气管及各叶、段支气管及其开口,通过支气管镜检查还可吸取分泌物开展刷检、活检,以及利用支气管、肺泡灌洗液进行病理学、细菌学、细胞学、免疫学以及生化学检查,对气管、支气管结核的诊断与治疗及与其他支气管肺部疾病的鉴别诊断均十分重要,对菌阴肺结核也有辅助诊断意义。此外,经胸壁超声、介入性超声(超声引导下的胸腔穿刺抽液、肺活体组织检查)在结核病的诊断方面已广泛应用。胸腔镜、纵隔镜检查和经内镜进行活检也已应用于临床结核病的诊断。

分子生物学诊断技术主要包括结核分枝杆菌病原学诊断、耐药性诊断和分枝杆菌菌种鉴定。目前各种分子生物学诊断技术均是以结核分枝杆菌管家基因或基因突变位点作为靶标序列进行疾病和药物敏感性诊断。结核分枝杆菌病原学分子诊断,多以结核分枝杆菌基因组中的管家基因作为靶标序列进行核酸扩增。目前临床上应用的核酸扩增技术主要包括实时荧光定量PCR技术和等(恒)温扩增技术,主要用于检测临床标本中是否存在结核分枝杆菌复合群。耐药分子诊断技术多以耐药相关基因为靶标,通过检测基因内部突变位点确定是否耐药,常用的耐药相关基因包括利福平耐药相关基因 ropB ,异烟肼耐药相关基因 katG inhA ,乙胺丁醇耐药相关基因 embB ,吡嗪酰胺耐药相关基因 pncA ,喹诺酮类耐药相关基因 gyrA gyrB ,二线注射类药物耐药相关基因 rrs 等,主要依赖实时荧光定量PCR技术、探针-反向杂交技术、高分辨率熔解曲线技术以及全基因组测序等。分枝杆菌菌种鉴定的金标准是依赖于同源基因测序后的序列比对,最重要的靶标基因是 16S rRNA ,除了基因测序技术以外,还包括探针-杂交技术、探针熔解曲线技术、免疫色谱分析、气相/液相色谱分析和质谱分析等。

虽然痰涂片镜检存在诸多局限,但仍然是中、低收入国家最广泛使用的活动性结核病检查手段。但是,新推出的Xpert MTB/RIF——基于自动 GeneXpert 技术的分子生物学检测手段正在极大地改变着结核病诊断的局面。自2010年引入使用以来,鉴于其高度的特异性和准确性,WHO推荐有条件地区将Xpert作为一线诊断筛查的重要手段,用以诊断成年人或儿童的疑似活动性结核病。

在HIV阳性人群中,痰涂片镜检只能查出22%~43%的活动性结核病。因此,WHO强烈建议以 Xpert MTB/RIF 为此类人群做初步筛查。现在,WHO推荐一种快速LAMP诊断,以辅助和加快对以下两个特定人群的活动性结核病诊断:①HIV 阳性住院患者,出现肺部或肺外结核病症状和指征,CD4 + T 细胞数量≤100/μl;②病情严重的 HIV 阳性患者,无论其 CD4 + T细胞数量多少、是否已知 CD4 + T 细胞数量。对于儿童结核病诊断,目前还没有金标准,因此,其诊断主要依赖于症状、体征、结核分枝杆菌感染相关证据(TST 或 IGRA 阳性)、接触史、胸部X线片(如出现肺门淋巴结肿大)、分枝杆菌培养和分子生物学检测(Xpert)结果。因为 Xpert比痰涂片镜检更准确,WHO推荐使用这一技术为疑似儿童(和成年人)活动性结核病、结核性淋巴结炎、结核性脑膜炎患者进行一线诊断。

三、耐药结核病的诊断方法

诊断耐药性可使用以下方法:表型、培养(检测细菌在有抗结核药物环境中的生存能力)、分子(检测结核分枝杆菌的基因突变情况,寻找有可能导致耐药的基因突变)诊断。

传统表型检测方法是在含抗结核药物培养基中进行结核分枝杆菌培养,观察生长是否受到抑制。常用的表型耐药检测方法包括常规检测方法中的比例法和绝对浓度法、快速培养仪检测方法、显微镜直视下药物敏感性测定法、硝酸还原酶测定法、氧化还原指示剂测定法等。表型药敏试验(DST)可以在固体培养基上直接或间接进行。间接试验则是将痰培养出的菌落进行接种,再进行相应药物的DST,包括绝对浓度法、比例法和抗性比率法,为最常用的DST方法,是DST的金标准。快速液体培养与药敏检测法结果较为可靠,具有较高的准确性和可重复性,可替代传统表型检测法。

耐药分子诊断技术,多以耐药相关基因为靶标,通过检测基因内部突变位点确定是否耐药,常用的耐药相关基因包括利福平耐药相关基因 ropB ,异烟肼耐药相关基因 katG inhA ,乙胺丁醇耐药相关基因 embB ,吡嗪酰胺耐药相关基因 pncA ,喹诺酮类耐药相关基因 gyrA gyrB 等,主要依赖实时荧光定量PCR技术、探针-反向杂交技术、高分辨率熔解曲线技术以及全基因组测序等。

在很多使用 Xpert 诊断活动性结核病的地区,Xpert 也在很大程度上提高了对耐多药结核病的诊断。此外,WHO也认可使用环介导等温扩增(loop-mediated isothermal amplification)诊断肺结核,使用分子线性探针检测对一线药物(如异烟肼、利福平)和部分二线药物(氟喹诺酮类、可注射类二线药物)进行快速药敏测试。

四、新的诊断方法前瞻

考虑到现有诊断技术均存在一定的局限性,需优先考虑开发新型诊断技术,已有一些(新)诊断工具正在研发中。然而,虽然这些新技术看起来强力有效,但大多都是为实验室环境设计的,使用的是已经确证的结核病生物标记——结核分枝杆菌的细菌核酸序列。要满足一线治疗要求,还需要展开若干短期、中期和长期工作。短期内,应努力扩大分子检测替代痰涂片镜检的范围,2017年WHO已评估该技术的使用情况;而XpertXDR 则可以检测更多关键药物的耐药情况(异烟肼、氟喹诺酮类、氨基糖苷类)。

新的分子技术还可以鉴定与药物相关的基因突变,帮助实现在诊断时为所有活动性结核病患者提供通用的药物敏感性检测。新一代测序工具显示出了极大潜力,但是,将其转化为可在低收入、高负担国家使用的一线工具,仍有很长一段路要走。中期内,应优先研发可在基层医疗服务机构使用的快速、低成本、不依赖于痰标本的检测方法。这类检测要鉴定出合适的生物标记(抗原、抗体、挥发性有机化合物、酶标记等)。截至目前,尽管有几种生物标记已经被鉴别出,但相关验证还在进行中。

长期目标是找到特定生物标记,稳定预测哪些结核潜伏感染人群发展为活动性结核病的风险最高,高风险的感染者能接受预防性治疗,而庞大的结核潜伏感染人群也能够成功缩小。另一长期目标是开发基于生物标记的治疗效果评价检测工具,现行的分子检测都还不能达到这一目的。

细菌学诊断曾经是结核病实验室诊断最重要的技术。随着时代的进步,越来越多新技术不断涌现,尤其是分子生物学诊断技术的开展,为结核病诊疗带来了革命性改变,大大提高了结核病实验室诊断的灵敏度和特异度。应该看到,细菌学诊断仍然是结核病实验室诊断的基础。一方面,传统诊断技术经过了漫长的时间考验,其可靠性和实用性不容置疑。另一方面,传统诊断技术价格低廉、技术简单、易于开展的特点,使其仍然是经济欠发达地区诊断结核病的主要技术手段。 WrnOUUoM/eq/1nErx6ucazX8dBrsRRwo+iXEfYqhikyFZ0twh4COyF60WIJjcHIC

点击中间区域
呼出菜单
上一章
目录
下一章
×