[1]SOWA J F. Principles of semantic networks: Exploration in the representation of Knowledge[J].Frame Problem in Artificial Intelligence, 1991(2-3):135-157.
[2]BERNERS-LEE T, HENDLER J, LASSILA O. The Semantic Web: A New Form of Web Content That is Meaningful to Computers will Unleash a Revolution of New Possibilities[J].Scientific American, 2001,284(5):34-43.
[3]AUER S, BARNAGHI P. Linked Data—The Story So Far[J].International Journal on Semantic Web and Information System, 2009,5(3):1-22.
[4]PAN J Z, VETERE G, GOMEZ-PEREZ J M, et al. Exploiting Linked Data and Knowledge Graphs in Large Organisations[M].Switzerland: Springer International Publishing, 2017.
[5]张晓林.颠覆性变革与后图书馆时代——推动知识服务的供给侧结构性改革[J].中国图书馆学报,2018,44(1):4-16.
[6]MORWAL S. Named Entity Recognition using Hidden Markov Model[J].International Journal on Natural Language Computing, 2012,1(4):15-23.
[7]RATNAPARKHI A. A simple introduction to maximum entropy models for natural language processing[R].Philadelphia: UNIIRCS Technical Reports Series, 1997.
[8]MCCALLUM A, LI W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[J].Association for Computational Linguistics, 2003,4:188-191.
[9]SETTLES B. Biomedical named entity recognition using conditional random fields and rich feature sets[C]//Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its Applications, 2004:107-110.
[10]DOYA K. Bifurcations of Recurrent Neural Networks in Gradient Descent Learning[J].IEEE Transactions on Neural Networks, 1993(1):75-80.
[11]XU K, FENG Y, HUANG S, et al. Semantic relation classification via convolutional neural networks with simple negative sampling[J].Computer Science, 2015,71(7):941-949.
[12]WANG L, CAO Z, DE MELO G, et al. Relation classification via multi-level attention CNNs[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers),2016:1298-1307.
[13]ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers),2016:207-212.
[14]DEVLIN J, CHANG M W, LEE K, et al. BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, Minnesota: ACL, 2019:4171-4186.
[15]STEFANOVA S, RISCH T. Scalable reconstruction of RDF-archived relational databases[C]//Proceedings of the 5th Workshop on Semantic Web Information Management, 2013:1-4.
[16]刘振,张智雄.RDB-to-RDF的技术方法和工具综述[J].现代图书情报技术,2014,30(11):17-23.
[17]ROSHDY M H, FADEL K M, EL YAMANY H F. Developing a RDB-RDF management framework for interoperable web environments[C]//IEEE Eurocon 2013,2013:307-313.
[18]SHVAIKO P, EUZENAT J. Ontology matching:state of the art and future challenges[J].IEEE Transactions on Knowledge and Data Engineering, 2011,25(1):158-176.
[19]KNAP T, HANEČÁK P, KLÍMEK J, et al. UnifiedViews: An ETL tool for RDF data management[J].Semantic Web, 2018,9(5):661-676.
[20]王昊奋,漆桂林,陈华钧.知识图谱方法、实践与应用[M].北京:电子工业出版社,2019.
[21]李悦,孙坦,赵瑞雪,等.大规模RDF三元组转换及存储工具比较研究[J].数字图书馆论坛,2020(11):2-12.
[22]HARTIG O. Reconciliation of RDF and Property Graphs[J/OL].ArXiv:1409.3288,2014.
[23]ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology:tool for the unification of biology[J].Nature Genetics, 2000,25(1):25-29.
[24]KOBILAROV G, SCOTT T, RAIMOND Y, et al. Media meets semantic web-how the BBc uses dbpedia and linked data to make connections[C]//European Semantic Web Conference. Springer, Berlin, Heidelberg, 2009:723-737.
[25]WANG R, YAN Y, WANG J, et al. AceKG:A large-scale knowledge graph for academic data mining[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018:1487-1490.
[26]ZHANG F, LIU X, TANG J, et al. OAG:Toward linking large-scale heterogeneous entity graphs[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019:2585-2595.
[27]TANG J, ZHANG J, YAO L, et al. Arnetminer:extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008:990-998.
[28]ROSSANEZ A, DOS REIS J C. Generating Knowledge Graphs from Scientific Literature of Degenerative Diseases[C]//Proceedings of the 4th International Workshop on Semantics-Powered Data Mining and Analytics, 2019:12-23.
[29]ROSSANEZ A, DOS REIS J C, TORRES R S, et al. KGen:a knowledge graph generator from biomedical scientific literature[J].BMC Medical Informatics and Decision Making, 2020,20(4):1-24.