[1] LONG Y, TWIEFEL J, WALLASCHEK J. A review on the mechanisms of ultrasonic wedge-wedge bonding[J]. Journal of Materials Processing Technology, 2017, 245: 241-258.
[2] ZHONG Z W, TEE T Y, LUAN J E. Recent advances in wire bonding, flip chip and lead-free solder for advanced microelectronics packaging[J]. Microelectronics International, 2007, 24(7): 18-26.
[3] GU B, SHEN S, LI H. Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation[J]. Chinese Physics B, 2022, 31(1): 016101.
[4] ZHONG Z W. Overview of wire bonding using copper wire or insulated wire[J]. Microelectronics Reliability, 2011, 51(1): 4-12.
[5] SHAH A, REZVANI A, MAYER M, et al. Reduction of ultrasonic pad stress and aluminum splash in copper ball bonding[J]. Microelectronics Reliability, 2011, 51(1): 67-74.
[6] SRIKANTH N, PREMKUMAR J, SIVAKUMAR M, et al. Effect of wire purity on copper wire bonding[C].2007 9th Electronics Packaging Technology Conference. IEEE, 2007: 755-759.
[7] THOMAS S, REYNOSO D. Reliability of Cu wire bonding on active area for automotive applications[C]. 2009 11th Electronics Packaging Technology Conference. IEEE, 2009: 363-368.
[8] SHAH A, ROCKEY T, XU H, et al. Advanced wire bonding technology for Ag wire[C].2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC). IEEE, 2015: 1-8.
[9] GAO H, LU J, LU R, et al. Reliability study of silver, copper and gold wire bonding on IC device[J]. International Symposium on Microelectronics, 2014(1): 000850-000855.
[10] ABDESLAM S. Influence of silver inclusions on the mechanical behavior of Cu-Ag nanocomposite during nanoindentation: Molecular dynamics study[J]. Results in Physics, 2019, 15: 102672.
[11] TAN Y S, LI X, CHEN X, et al. Low-pressure-assisted large-area (>800 mm 2 ) sintered-silver bonding for high-power electronic packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 8(2): 202-209.
[12] ZULKIFLI M N, ABDULLAH S, OTHMAN N K, et al. Some thoughts on bondability and strength of gold wire bonding[J]. Gold Bulletin, 2012, 45(3): 115-125.
[13] KHOURY S L, BURKHARD D J, GALLOWAY D P, et al. A comparison of copper and gold wire bonding on integrated circuit devices[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1990, 13(4): 673-681.
[14] YOO K A, UHM C, KWON T J, et al. Reliability study of low-cost alternative Ag bonding wire with various bond pad materials[C].2009 11th Electronics Packaging Technology Conference. IEEE, 2009: 851-857.
[15] ZHANG X, TEE T Y. Numerical and experimental correlation of high temperature reliability of gold wire bonding to intermetallic (Au/Al) uniformity[J]. Thin Solid Films, 2006, 504(1-2): 355-361.
[16] LANDMAN U, LUEDTKE W D, BURNHAM N A, et al. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture[J]. Science, 1990, 248(4954): 454-461.
[17] LONG Y, HE B, CUI W, et al. Molecular dynamics simulation of microwelds formation and breakage during ultrasonic copper wire bonding[C].2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018: 1434-1439.
[18] LONG Y, DENCKER F, ISAAK A, et al. Self-cleaning mechanisms in ultrasonic bonding of Al wire[J]. Journal of Materials Processing Technology, 2018, 258: 58-66.
[19] DING Y, KIM J K, ZHENG R Y. Molecular dynamic simulation on mechanism of ultrasonic wire bonding in electronic package[J]. Advanced Materials Research, 2010, 97: 2639-2643.
[20] LI J, LU B, ZHANG Y, et al. Nanoindentation response of nanocrystalline copper via molecular dynamics: Grain-size effect[J]. Materials Chemistry and Physics, 2020, 241: 122391.
[21] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
[22] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015012.
[23] DAW M S, BASKES M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals[J]. Physical Review Letters, 1983, 50(17): 1285.
[24] DAW M S, BASKES M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443.
[25] ZHOU X W, JOHNSON R A, WADLEY H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69(14): 144113.
[26] LONG Y, HE B, CUI W, et al. Investigations on the mechanism of microweld changes during ultrasonic wire bonding by molecular dynamics simulation[J]. Materials & Design, 2020, 192: 108718.
[27] LENG Y, YANG G, HU Y, et al. Computer experiments on nano-indentation: A molecular dynamics approach to the elasto-plastic contact of metal copper[J]. Journal of Materials Science, 2000, 35(8): 2061-2067.
[28] SHAO W, SHI Z, RAO L, et al. Molecular dynamics simulation on deformation behavior of DLC films based on γ-Fe/CrN matrix[J]. Materials Today Communications, 2020, 25: 101460.
[29] ZHAO P, ZHANG Q, GUO Y, et al. Atomic simulation of crystal orientation effect on coating surface generation mechanisms in cold spray[J]. Computational Materials Science, 2020, 184: 109859.