[1] Valeur B,Berberan-Santos M N. A brief history of fluorescence and phosphorescence before the emergence of quantum theory[J]. Journal of Chemical Education,2011,88(6):731-738.
[2] 马会民.光学探针与传感分析[M].北京:化学工业出版社,2020.
[3] Miller F A. The history of spectroscopy as illustrated on stamps[J]. Applied Spectroscopy,1983,37(3):219-225.
[4] Brown J M. Molecular Spectroscopy[M]. Oxford:Oxford University Press,1998.
[5] Banwell C N,McCash E M. Fundamentals of molecular spectroscopy[M]. 4th edn. New York:McGraw-Hill Book Company,1994.
[6] Jain V K. Introduction to Atomic and Molecular Spectroscopy[M]. Oxford:Alpha Science International Ltd.,2007.
[7] 柯以侃,董慧茹.分析化学手册 第三分册光谱分析[M].2版.北京:化学工业出版社,1998.
[8] Wan Q Q,Song Y C,Li Z,et al. In vivo monitoring of hydrogen sulfide using a cresyl violet-based ratiometric fluorescence probe[J]. Chemical Communications,2013,49(5):502-504.
[9] 马会民,余席茂,陈观铨,等.测定细胞内游离钙的有机显色剂和荧光试剂[J].化学通报,1993,11:37-42.
[10] 马会民,梁树权.光学分析试剂[J].化学通报,1999,10:29-33.
[11] 许金钩,王尊本.荧光分析法[M].3版.北京:科学出版社,2007.
[12] 张华山等.分子探针与检测试剂[M].北京:科学出版社,2002.
[13] 姚建年.高速发展的中国化学(1982-2012)[M].北京:科学出版社,2012.
[14] Li X H,Gao X H,Shi W,et al. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes[J]. Chemical Reviews,2014,114(1):590-659.
[15] Zhou J,Ma H M. Design principles of spectroscopic probes for biological applications[J]. Chemical Science,2016,7(10):6309-6315.
[16] Prost M,Canaple L,Samarut J,et al. Tagging live cells that express specific peptidase activity with solid-state fluorescence[J]. Chembiochem,2014,15(10):1413-1417,and references therein.
[17] Würthner F. Aggregation-induced emission (AIE):A historical perspective[J]. Angewandte Chemie International Edition,2020,59(34):14192-14196,and references therein.
[18] Li X H,Zhang G X,Ma H M,et al. 4,5-Dimethylthio-4′-[2-(9-anthryloxy)ethylthio] tetra-thiafulvalene,a highly selective and sensitive chemiluminescence probe for singlet oxygen[J]. Journal of the American Chemical Society,2004,126(37):11543-11548.
[19] Shi W,Ma H M. Rhodamine B thiolactone:A simple chemosensor for Hg 2+ in aqueous media[J]. Chemical Communications,2008(16):1856-1858.
[20] Chen W,Pacheco A,Takano Y,et al. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals[J]. Angewandte Chemie International Edition,2016,55(34):9993-9996.
[21] Kotani H,Ohkubo K,Crossley M J,et al. An efficient fluorescence sensor for superoxide with an acridinium ion-linked porphyrin triad[J]. Journal of the American Chemical Society,2011,133(29):11092-11095.
[22] Chen S M,Chen W,Shi W,et al. Spectroscopic response of ferrocene derivatives bearing a BODIPY moiety to water:A new dissociation reaction[J]. Chemistry — A European Journal,2012,18(3):925-930.
[23] Wu X F,Li L H,Shi W,et al. Sensitive and selective ratiometric fluorescence probes for detection of intracellular endogenous monoamine oxidase A[J]. Analytical Chemistry,2016,88(2):1440-1446.
[24] Wan Q Q,Chen S M,Shi W,et al. Lysosomal pH rise during heat shock monitored by a lysosome-targeting near-infrared ratiometric fluorescent probe[J]. Angewandte Chemie International Edition,2014,53(41):10916-10920.
[25] Grande V,Doria F,Freccero M,et al. An aggregating amphiphilic squaraine:A light-up probe that discriminates parallel G-quadruplexes[J]. Angewandte Chemie International Edition,2017,56(26):7520-7524.
[26] Sreejith S,Divya K P,Ajayaghosh A. A near-infrared squaraine dye as a latent ratiometric fluorophore for the detection of aminothiol content in blood plasma[J]. Angewandte Chemie International Edition,2008,120(41):8001-8005.
[27] 汪尔康.生命分析化学[M].北京:科学出版社,2006.
[28] Su X,Xiao X J,Zhang C,et al. Nucleic acid fluorescent probes for biological sensing[J]. Applied Spectroscopy,2012,66(11):1249-1262.
[29] Fang S M,Chen L,Zhao M P. Unimolecular chemically modified DNA fluorescent probe for one-step quantitative measurement of the activity of human apurinic/apyrimidinic endonuclease 1 in biological samples[J]. Analytical Chemistry,2015,87(24):11952-11956.
[30] Wu T B,Chen W,Yang Z Y,et al. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA[J]. Nucleic Acids Research,2018,46(4):e24.
[31] Chudakov D M,Matz M V,Lukyanov S,et al. Fluorescent proteins and their applications in imaging living cells and tissues[J]. Physiological Reviews,2010,90(3):1103-1163.
[32] Liu M M,Chao J,Deng S H,et al. Dark-field microscopy in imaging of plasmon resonant nanoparticles[J]. Colloids and Surfaces B,Biointerfaces,2014,124:111-117.
[33] Jensen T R,Malinsky M D,Haynes C L,et al. Nanosphere lithography:tunable localized surface plasmon resonance spectra of silver nanoparticles[J]. The Journal of Physical Chemistry B,2000,104(45):10549-10556.
[34] Xu X,Chen Y,Wei H J,et al. Counting bacteria using functionalized gold nanoparticles as the light-scattering reporter[J]. Analytical Chemistry,2012,84(22):9721-9728.
[35] Li T,Xu X,Zhang G Q,et al. Nonamplification sandwich assay platform for sensitive nucleic acid detection based on AuNPs enumeration with the dark-field microscope[J]. Analytical Chemistry,2016,88(8):4188-4191.
[36] Xu X,Li T,Xu Z X,et al. Automatic enumeration of gold nanomaterials at the single-particle level[J]. Analytical Chemistry,2015,87(5):2576-2581.
[37] Lam K S,Salmon S E,Hersh E M,et al. A new type of synthetic peptide library for identifying ligand-binding activity[J]. Nature,1991,354 (6348):434.
[38] Pei X J,Lai T C,Tao G Y,et al. Ultraspecific multiplexed detection of low-abundance single-nucleotide variants by combining a masking tactic with fluorescent nanoparticle counting[J]. Analytical Chemistry,2018,90(6):4226-4233.
[39] Pei X J,Yin H Y,Lai T C,et al. Multiplexed detection of attomoles of nucleic acids using fluorescent nanoparticle counting platform[J]. Analytical Chemistry,2018,90(2):1376-1383.