购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1]BRUMMELEN J V,O'BRIEN M,GRUYER D,et al.Autonomous vehicle perception:the technology of today and tomorrow.Transp.Res.C,Emerg.Technol.,vol.89,pp.384-406,Apr.2018.

[2]KUUTTI S,FALLAH S,KATSAROS K,et al.A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications.IEEE Internet Things J.,vol.5,no.2,pp.829-846,Apr.2018.

[3]Velodyne HDL-64E LiDAR Specification.Apr.10,2018.

[4]PARK Y,YUN S,WON C S,et al.Calibration between color camera and 3D LiDAR instruments with a polygonal planar board.Sensors,vol.14,no.3,pp.5333-5353,2014.

[5]ISHIKAWA R,OISHI T,IKEUCHI K.LiDAR and camera calibration using motion estimated by sensor fusion odometry.IEEE,Apr.2018.

[6]GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving?The KITTI vision benchmark suite.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.(CVPR),Jun.2012,pp.3354-3361.

[7]GAIDON A,WANG Q,CABON Y,et al.Virtual worlds as proxy for multi-object tracking analysis.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.(CVPR),Jun.2016,pp.4340-4349.

[8]XU H,GAO Y,YU F,et al.End-to-end learning of driving models from large-scale video datasets.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.(CVPR),Jul.2017,pp.3530-3538.

[9]DOSOVITSKIY A,ROS G,CODEVILLA F,et al.CARLA:an open urban driving simulator.in Proc.1st Conf.Robot Learn.(CoRL),Nov.2017,pp.1-16.

[10]MÜLLER M,CASSER V,LAHOUD J,et al.Sim4CV:a photo-realistic simulator for computer vision applications.Int.J.Comput.Vis.,vol.126,no.9,pp.902-919,Sep.2018.

[11]CHEN X,KUNDU K,ZHANG Z,et al.Monocular 3D object detection for autonomous driving.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.(CVPR),Jun.2016,pp.2147-2156.

[12]GIRSHICK R.Faster R-CNN.in Proc.IEEE Int.Conf.Comput.Vis.(ICCV),Washington,DC,USA,Dec.2015,pp.1440-1448,doi:10.1109/ICCV.2015.169.

[13]CHEN X,KUNDU K,ZHU Y.3D object proposals for accurate object class detection.in Advances in Neural Information Processing Systems,2015,pp.424-432.

[14]XIANG Y,CHOI W,LIN Y,et al.Data-driven 3D voxel patterns for object category recognition.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.,Jun.2015,pp.1903-1911.

[15]XIANG Y,CHOI W,LIN Y,et al.Subcategory-aware convolutional neural networks for object proposals and detection.in Proc.IEEE Winter Conf.Appl.Comput.Vis.(WACV),Mar.2017,pp.924-933.

[16]CHABOT F,CHAOUCH M,RABARISOA J,et al.Deep MANTA:a coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.(CVPR),Jul.2017,pp.1827-1836.

[17]MOUSAVIAN A,ANGUELOV D,FLYNN J,et al.3D bounding box estimation using deep learning and geometry.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.(CVPR),Jul.2017,pp.5632-5640.

[18]PAYEN D,ABARGHOUEI A A,BRECKON T P.Eliminating the blind spot:Adapting 3D object detection and monocular depth estimation to 360° panoramic imagery.in Proc.Eur.Conf.Comput.Vis.(ECCV),Sep.2018,pp.812-830.

[19]LI B,ZHANG T,XIA T.Vehicle detection from 3D LiDAR using fully convolutional network.in Proc.Robot.,Sci.Syst.XII,AnnArbor,MI,USA,Jun.2016.

[20]BELTRÁN J,GUINDEL C,MORENO F M,et al.BirdNet:A 3D object detection framework from LiDAR information.May 2018.

[21]SIMON M,MILZ S,AMENDE K,et al.Complex-YOLO:real-time 3D object detection on point clouds.Mar.2018.

[22]FENG D,ROSENBAUM L,DIETMAYER K.Towards safe autonomous driving:capture uncertainty in the deep neural network for LiDAR 3D vehicle detection.2018.

[23]LI B.3D fully convolutional network for vehicle detection in point cloud.in Proc.IEEE/RSJ Int.Conf.Intell.Robots Syst.(IROS),Sep.2017,pp.1513-1518.

[24]ENGELCKE M,RAO D,WANG D Z,et al.Vote3Deep:fast object detection in 3D point clouds using efficient convolutional neural networks.in Proc.IEEE Int.Conf.Robot.Autom.(ICRA),May 2017,pp.1355-1361.

[25]CHARLES R Q,SU H,KAICHUN M,et al.PointNet:deep learning on point sets for 3D classification and segmentation.in Proc.Int.Conf.Comput.Vis.Pattern Recognit.,Jun.2017,pp.77-85.

[26]SCHLOSSER J,CHOW C K,KIRA Z.Fusing LiDAR and images for pedestrian detection using convolutional neural networks.in Proc.IEEE Int.Conf.Robot.Autom.(ICRA),May 2016,pp.2198-2205.

[27]SCHLOSSER J,CHOW C K,KIRA Z.Fusing LiDAR and images for pedestrian detection using convolutional neural networks.in Proc.IEEE Int.Conf.Robot.Autom.(ICRA),May 2016,pp.2198-2205.

[28]CHEN X,MA H,WAN J,et al.Multi-view 3D object detection network for autonomous driving.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.(CVPR),Jul.2017,pp.6526-6534.

[29]KU J,MOZIfiAN M,LEE J,et al.Joint 3D proposal generation and object detection from view aggregation.in Proc.IEEE/RSJ Int.Conf.Intell.Robots Syst.(IROS),2018,pp.1-8.

[30]QI C R,LIU W,WU C,et al.Frustum PointNets for 3D object detection from RGB-D data.in Proc.IEEE Conf.Comput.Vis.Pattern Recognit.(CVPR),Jun.2018,pp.918-927.

[31]DU X,ANG M H,KARAMAN S,et al.A general pipeline for 3D detection of vehicles.in Proc.IEEE Int.Conf.Robot.Autom.(ICRA),Brisbane,QLD,Australia,May 2018,pp.3194-3200.

[32]SIMON M,MILZ S,AMENDE K,et al.Complex-YOLO:real time 3D object detection on point clouds,arXiv,2018. NbvUW7gQO30d5Baz9JSRBW0EIl9CHWUXAjXnbhYA3RDlWtE0pqeOoKssgUAPvkxP

点击中间区域
呼出菜单
上一章
目录
下一章
×