美国佛罗里达大学动物科学与农学系的Myer等(1993)研究了不同饲料对猪胴体脂肪酸成分、胴体品质和肉质特性的影响。结果表明,从平均体重33kg开始至102kg,喂食含有高油酸花生(油酸含量75%)、普通花生(油酸含量53%)或菜籽油(油酸含量60%)(以上各处理相当于添加10%油脂)的玉米-豆粕型日粮,与不添加油脂的对照相比,均极显著提升了背部脂肪中的单不饱和脂肪酸含量。高油酸花生处理提升率最高,比对照高32%。普通花生和菜籽油处理极显著提高了多不饱和脂肪酸含量(提高近2倍),高油酸花生处理略有下降。3个处理总不饱和脂肪酸含量极显著高于对照,其中高油酸花生和普通花生处理均提高了24%,菜籽油提高了27%。菜籽油和普通花生处理胴体脂肪松软油腻度显著高于高油酸花生处理和对照。日粮油脂来源对其他胴体成分性状和各种肉质特性无显著影响。日粮油脂来源对烤里脊(broiled loin chops)和炸培根(fried bacon)口味评价结果影响未达显著水平,但注意到菜籽油处理炸培根异味(off-flavor)发生率高,普通花生处理较轻,高油酸花生处理和对照则无。高油酸花生处理提高了猪肉脂肪中的不饱和脂肪酸含量,对胴体和肉质特性无不良影响。
1.蛋鸡 美国Toomer等(2019a)发现与常规豆粕+玉米饲料对照相比,用添加高油酸花生的饲料(高油酸花生+玉米)饲喂蛋鸡,USDA等级质量(USDA grade quality)、鸡蛋蛋白高度[egg albumen height,或称“哈夫单位”(Haugh unit)]等蛋鸡性能和鸡蛋质量指标无显著差异,但蛋重减轻。饲喂高油酸饲料所产鸡蛋为60%中等大小、35%大、3%超大、2%小,饲喂常规饲料所产鸡蛋为24%中等大小、66%大、10%超大、0.3%小,可见饲喂高油酸饲料减少了过大鸡蛋的比例,对鸡蛋产业有潜在价值。另外,饲喂高油酸饲料的蛋黄颜色打分更高,β胡萝卜素和油酸含量更高,而对照组则棕榈酸、硬脂酸等饱和脂肪酸和反式脂肪(trans fat)高。研究期间未发现鸡蛋蛋白提取物与兔抗花生凝集素抗体有反应。以上研究认为,高油酸花生可改善鸡蛋营养,从而为消费者提供潜在的健康益处。
Redhead等(2021)采用对照日粮(添加7.8%家禽脂肪的玉米-豆粕型常规日粮)、高油酸花生日粮(约含20%粗磨全高油酸花生的日粮)、油酸日粮(补充有2.6%油酸脂肪酸油的对照日粮)3种等氮和等热量日粮配方,以确定用高油酸花生日粮饲喂产蛋鸡对蛋品质、消化率和饲料转化率的影响。与喂食高油酸花生和对照日粮的蛋鸡相比,喂食油酸日粮的蛋鸡产蛋数量更多( p <0.05);喂食高油酸花生日粮的母鸡所产鸡蛋的罗氏蛋黄色值(Roche yolk color value)更高( p <0.001);各处理组的蛋鸡生产性能、蛋壳颜色、蛋壳强度、蛋壳弹性和蛋清高度、回肠脂肪消化率或绒毛表面没有差异。然而,相对于对照日粮,饲喂高油酸花生日粮的蛋鸡表观代谢能( p <0.01)和回肠蛋白质消化率( p =0.02)更高。这项研究提示,未脱除种皮的高油酸花生仁或许是蛋鸡可接受的替代饲料成分。
2.肉鸡 Toomer等(2019b)研究了肉鸡饲喂等热量、等氮高油酸花生日粮(10%~12%高油酸花生+玉米)、油酸日粮(对照日粮+约6%的油酸油)和普通对照日粮(豆粕+玉米)的效果。结果表明,饲喂高油酸花生和对照日粮的肉鸡体重相似;饲喂高油酸花生日粮的肉鸡饲料转化率在第2周、第4周和第6周显著高于其他处理;喂食高油酸花生日粮的肉鸡胴体和胸大肌重量则小于其他处理;喂食高油酸花生日粮的肉鸡鸡胸肉饱和脂肪酸和反式脂肪酸含量极显著低于对照组。以上研究结果表明,给肉鸡喂食完整的不脱皮高油酸花生仁可作为一种丰富鸡肉不饱和脂肪酸的有效途径。
Toomer等(2019c)研究了雄性肉鸡饲喂3种等热量、等氮日粮(普通豆粕+玉米对照日粮、10%~12%高油酸花生+玉米日粮、约添加6.0%油酸脂肪酸油的对照玉米日粮)对肉质和鸡肉感官属性的影响。与其他组相比,喂食高油酸花生的肉鸡胴体重和鸡胸肉产量降低,而喂食高油酸花生的肉鸡腿胴体(leg carcass)产量更高。与其他处理相比,喂食高油酸花生的肉鸡鸡胸肉pH下降、L*色值降低、煮熟损失增加。尽管如此,熟鸡肉感官属性打分在3个处理组间是相似的,说明饲喂高油酸花生对鸡肉感官品质指标无不良影响。
Toomer等(2020)研究了饲喂高油酸花生日粮对肉鸡生产性能、养分消化率和肠道形态的影响。3种等热量、等氮日粮配方:①日粮中包含约10%粗磨全高油酸花生仁;②添加5.5%家禽脂肪的玉米-豆粕对照日粮;③补充有5.5%油酸脂肪酸油的对照日粮。将300只Ross 708肉鸡随机放置在每个处理10个重复的围栏中,每围栏10只小鸡,饲养至42d。每周测定体重和采食量,并计算饲料转化率。在第42d收集空肠样本用于组织形态学分析。在第14d和第42d,饲喂高油酸花生组的肉鸡比其他处理组具有更低的体重( p <0.05)和更高的饲料转化率。处理组之间的空肠绒毛表面积没有显著差异。然而,与其他处理组相比,喂食高油酸花生日粮的肉鸡具有更高的表观代谢能( p =0.019),表明高油酸花生处理组改善了日粮脂肪和/或碳水化合物的营养吸收,但仍需进一步的研究来确定高油酸花生作为替代家禽饲料成分的营养价值。
在化石燃料日益紧缺、环境问题压力加剧的今天,生物柴油作为可再生清洁能源的来源日益受到重视(吴谋成等,2009)。
花生单位面积产油量高于作为生物柴油原料的大豆。从价格上看,用花生生产生物柴油目前暂时还不具备竞争优势。在美国农业部和佐治亚大学的研究者看来,花生种植者利用自产花生榨取非精炼油(unrefined oil)制造生物柴油,可满足其自身需要(Davis等,2009)。花生生物柴油与化石柴油按20%:80%的比例混用,可有效降低单独使用花生生物柴油时较高的黏度,并利于改进化石柴油的润滑性(Davis等,2009)。
从生物质能源的角度看,高油酸花生油比普通花生油更适合生产生物柴油。与普通花生生物柴油相比,以高油酸花生油为原料生产的生物柴油具有更好的贮藏稳定性。Moser等(2012)报道,高油酸花生油甲酯(high oleic peanut methyl ester)氧化稳定性(诱导期为21.1h)优于榛子油甲酯(诱导期为7.6h)和胡桃油甲酯(诱导期为2.9h);但因超长链脂肪酸酯含量高,其低温流动性能差,云点 (cloud point,CP)为17.8℃。
生物柴油在低于环境温度下结晶倾向的重要性高于燃料液体黏度。在低温结晶过程中,以前处于液态的分子开始堆积在一起,形成有序的晶体。这些晶体会堵塞燃料系统,在低温下导致机械故障,势必限制低温下纯的和高度混合的生物柴油燃料的使用(Davis等,2009)。Davis等(2009)发现,以10℃ /min冷却花生生物柴油样品时典型的DSC热特征曲线(DSC thermograms,又称DSC热谱图)显示,在所用全部花生生物柴油样品中可检测到两个放热峰(exothermic peak),第1个为结晶峰(crystallization peak)1(CP1),起始温度为12.6~14.7℃。第2个是一个较大的峰,在-55.6~-43.1℃附近起始,称为结晶峰2(CP2)。CP1被认为是样品中微晶开始形成的点,该峰的出现应与云点数据相关。从生物柴油的角度看,了解影响CP1的因素至关重要,因为运行中的发动机中存在此类微晶会导致发动机损坏。花生生物柴油经-10℃低温处理(winterization,冬化)1周,随后收集该温度下的可溶部分并分析FAME(fatty acid methyl esters,脂肪酸甲酯)成分变化,发现其中花生酸(C20:0)、山嵛酸(C22:0)、木蜡酸(C24:0)含量均明显下降,且平均下降量C24:0>C22:0>C20:0。回归分析表明,C24:0与CP1起始密切相关(R 2 =0.88)。这表明低温处理可能具有改善低温下花生生物柴油产品的实际应用价值。Pérez等(2010)研究表明,使用甲醇的结晶过滤技术(crystallization filtration using methanol)效果较好。Davis等(2009)认为,生物柴油专用型花生品种需减少长链饱和脂肪酸(long chain fatty acid,LCFA)含量,高含油量也是极其重要的。美国佐治亚大学试图研发专门用于生产生物柴油的非食用高油花生(Azad,2019)。
Wang等(2011)采用152份花生材料研究表明,花生中的油酸含量与亚油酸、花生酸和山嵛酸含量呈显著负相关。Zhang等(2015)采用9份花生材料研究发现,花生油酸、亚油酸、棕榈酸含量与花生酸、花生一烯酸、山嵛酸含量相关不显著。Wilson等(2013)研究了两个杂交组合F 2 及其与双亲回交BC 1 世代脂肪酸含量的遗传规律,发现花生酸、山嵛酸、木蜡酸含量与油亚比分别呈非显著负相关或不相关、显著或不显著负相关、不显著负相关关系。从脂肪酸生物合成途径也可以看出(图1-15),通过诱变或基因工程技术切断18碳脂肪酸(硬脂酸)碳链延长途径,可望降低长链脂肪酸(long-chain fatty acid,LCFA)含量。因此认为,可以在提高花生油酸含量的同时,降低长链脂肪酸含量,提高其抗凝性,从而生产出质量更好的生物柴油。
图1-15 植物种子中常见脂肪酸链延长和去饱和,示脂肪酸间的关系
烟酸(也称维生素B 3 ,尼克酸)和烟酰胺(nicotinamide)总称为维生素PP或抗癞皮病维生素,是人体必需的13种维生素之一(韩奕奕等,2020)。
有报道发现,高油酸花生烘烤前后烟酸与烟酰胺含量变化与普通花生不同。2个高油酸花生品种(K-Ol、Milyang#14)烘烤后烟酸与烟酰胺含量之和均显著高于生花生,而2个普通花生品种(Daekwang、Poongan)烘烤后烟酸与烟酰胺含量之和则显著下降或无显著差异(Kim等,2018)。
[1] 董贝森.花生蛋白粉的制取及其在食品工业上的应用.中国油料作物学报,1998,20(3):85~89.
[2] 韩奕奕,王霞,马颖清,等.乳粉中烟酸和烟酰胺含量测定能力验证结果与分析.食品安全质量检测学报,2020,11(17):5879~5885.
[3] 何东平.水相酶法同步提取冷榨花生饼中蛋白质和花生油的研究.华中农业大学,学位论文.2006,28~30.
[4] 李霞,刘尚军,高畅.高油酸花生酱的制备及其氧化稳定性研究.中国调味品,2020,45(9):43~47.
[5] 穆树旗,王传堂,李万鑫,等.高油酸花生花育963和普通油酸花生花育22号油炸花生仁货架期预测.农业科技通讯,2021,(3):156~159.
[6] 潘丽娟,杨庆利,闵平,等.高油酸花生对大白鼠血脂水平影响的研究.花生学报,2009,38(3):6~9.
[7] 食品安全国家标准食品中酸价的测定:GB 5009.229—2016.北京:中国标准出版社,2017.
[8] 食品安全国家标准食品中过氧化值的测定:GB 5009.227—2016.北京:中国标准出版社,2017.
[9] 食品安全国家标准坚果与籽类食品:GB 19300—2014.北京:中国标准出版社,2015.
[10] 王传堂,张青云,唐月异,等.自然老化对高油酸花生产量性状的影响.山东农业科学,2016,48(1):44~46.
[11] 吴谋成.生物柴油.北京:化学工业出版社,2009.
[12] 余明慧,张顺,石守设,等.南种北繁桂花1026在信阳适应性研究.天津农业科学,2016,22(6):128~130.
[13] 张青云,王传堂,唐月异,等.自然老化对高油酸花生种用品质的影响.花生学报,2016a,45(2):21~26.
[14] 张青云,王传堂,唐月异,等.高油酸新、陈花生所结种子的种用品质与营养品质研究.山东农业科学,2016b,45(3):47~48,51.
[15] 赵志浩.高油酸花生油预防代谢综合征及其机制研究.中国农业科学院,博士学位论文,2020.
[16] 郑畅,杨湄,周琦,等.高油酸花生油与普通油酸花生油的脂肪酸、微量成分含量和氧化稳定性.中国油脂,2014,(11):40~43.
[17] Azad K.(ed.)Advances in Eco-Fuels for a Sustainable Environment.Woodhead Publishing.2019.https: //doi.org/10.1016/C2017-0-04211-8
[18] Barbour JA,Howe PR,Buckley JD,et al.Lower energy intake following consumption of Hi-oleic and regular peanuts compared with iso-energetic consumption of potato crisps.Appetite.2014,82:124~130.
[19] Barbour JA,Howe PRC,Buckley JD,et al.Effect of 12weeks high oleic peanut consumption on cardio-metabolic risk factors and body composition.Nutrients,2015,7(9):7381~7398.
[20] Barbour JA,Howea PRC,Buckleya JD,et al.Cerebrovascular and cognitive benefits of high-oleic peanut consumption in healthy overweight middle-aged adults.Nutritional Neuroscience:An International Journal on Nutrition,Diet and Nervous System,2016.DOI:10.1080/1028415X.2016.1204744.
[21] Bimro ET,Hovav R,Nyska A,et al.High oleic peanuts improve parameters leading to fatty liver development and change the microbiota in mice intestine.Food&;Nutrition Research,2020,64.doi:10.29219/fnr.v64.4278
[22] Bolton GE,Sanders TH.Effect of roasting oil composition on the stability of roasted high-oleic peanuts.Journal of the American Oil Chemists’Society,2002,79(2):129~132.https: //doi.org/10.1007/s11746-002-0446-1
[23] Braddock JC,Sims CA,O’Keefe SF.Flavor and oxidative stability of roasted high oleic acid peanuts.Journal of Food Science,1995,60(3):489~493.
[24] Chung SY,Maleki S,Champagne ET,et al.High-oleic peanuts are not different from normal peanuts in allergenic properties.Journal of Agricultural and Food Chemistry,2002,50(4):878~882.
[25] Chung SY,Mattison CP,Reed S,et al.Treatment with oleic acid reduces IgE binding to peanut and cashew allergens.Food Chemistry,2015,180:295~300.doi:10.1016/j.foodchem.2015.02.056
[26] Davis JD,Geller D,Faircloth WH,et al.Comparison of biodiesel produced from unrefined oils of different peanut cultivars.Journal of American Oil Chemistry Society,2009,86:353~361.
[27] Davis JP,Price K,Dean LL,et al.Peanut oil stability and physical properties across a range of industrially relevant oleic acid/linoleic acid ratios.Peanut Science,2016,43:1~11.https: //doi.org/10.3146/0095-3679-43.1.1
[28] dos Santos OV,Agibert SAC,Pavan R,et al.Physicochemical,chromatographic,oxidative,and thermogravimetric parameters of high-oleic peanut oil( Arachis hypogaea L.IAC-505).Journal of Thermal Analysis and Calorimetry,2019,138:1793~1800.https: //doi.org/10.1007/s10973-019-08182-z
[29] DostálováJ,Hanzlík P,Réblová Z,et al.Oxidative changes of vegetable oils during microwave heating.Czech Journal of Food Sciences,2005,23(6):230~239.
[30] Igarashi K,Kurata D.Effect of high-oleic peanut intake on aging and its hippocampal markers in Senescence-Accelerated Mice(SAMP8).Nutrient,2020,12(11):3461.doi:10.3390/nu12113461[31] Lim HJ,Kim DS,Pan JH,et al.Characterization of physicochemical and sensory attributes of a novel high-oleic peanut oil cultivar( Arachis hypogaea ssp. fastigiata L.).Applied Biological Chemistry,2017,60,653~657.https: //doi.org/10.1007/s13765-017-0324-6
[32] Kim DS,Kim HS,Hong SJ,et al.Comparison of the retention rates of thiamin,riboflavin,and niacin between normal and high-oleic peanuts after roasting.Applied Biological Chemistry,2018,61,449-458.https: //doi.org/10.1007/s13765-018-0381-5
[33] Martín MP,Grosso AL,Nepote V,et al.Sensory and chemical stabilities of high-oleic and normal-oleic peanuts in shell during long-term storage.Journal of Food Science,2018,83(9):2362~2368.doi:10.1111/1750-3841.14295
[34] Miller JF,Zimmerman DC,Vick BA.Genetic control of high oleic acid content in sunflower oil.Crop Science,1987,27(5),923~926.
[35] Moreira Alves RD,Boroni Moreira AP,Silva Macedo V,et al.High-oleic peanuts increase diet induced thermogenesis in overweight and obese men.Nutrición Hospitalaria,2014,29(5):1024-10322014a,29(5):1024~1032.doi:10.3305/nh.2014.29.5.7235
[36] Moreira Alves RD,Moreira AP,Macedo VS,et al.Regular intake of high-oleic peanuts improves fat oxidation and body composition in overweight/obese men pursuing an energy-restricted diet.Obesity,2014b,22(6):1422~1429.
[37] Moreira Alves RD,Boroni Moreira AP,Macedo VS,et al.High-oleic peanuts:new perspective to attenuate glucose homeostasis disruption and inflammation related obesity.Obesity,2014c,22(9):1981~1988.
[38] Moreira AP,Teixeira TF,Alves RD,et al.Effect of a high-fat meal containing conventional or high-oleic peanuts on post-prandial lipopolysaccharide concentrations in overweight/obese men.Journal of Human Nutrition and Dietetics,2016,29(1):95~104.
[39] Morelló JR,Motilva MJ,Tovar MJ,et al.Changes in commercial virgin olive oil(cv Arbequina)during storage,with special emphasis on the phenolic fraction.Food chemistry,2004,85(3):357~364.https: //doi.org/10.1016/j.foodchem.2003.07.012
[40] Moser BR.Preparation of fatty acid methyl esters from hazelnut,high-oleic peanut and walnut oils and evaluation as biodiesel.Fuel,2012,92:231~238.
[41] Mozingo RW,O’Keefe SP,Sanders TH,et al.Improving shelf life of roasted and salted inshell peanuts using high oleic fatty acid chemistry.Peanut Science,2004,31:40~45.
[42] Mugendi JB,Sims CA,Gorbet DW,et al.Flavor stability of high-oleic peanuts stored at low humidity.Journal of the American Oil Chemists’Society,1998,75(1),21~25.
[43] Myer RO,Johnson DD,Knauft DA,et al.Effect of feeding high-oleic-acid peanuts to growing finishing swine on resulting carcass fatty acid profile and on carcass and meat quality characteristics.Journal of Animal Science,1992,70(12):3734~3741.
[44] Nawade B,Mishra GP,Radhakrishnan T,et al.High oleic peanut breeding:achievements perspectives and prospects.Trends in Food Science&;Technology,2018,78:107~119.doi:10.1016/j.tifs.2018.05.022
[45] Nepote V,Mestrallet MG,Accietto RH,et al.Chemical and sensory stability of roasted high-oleic peanuts from Argentina.Journal of the Science of Food and Agriculture,2006a,86:944~952.
[46] Nepote V,Mestrallet MG,Grosso NR.Oxidative stability in fried-salted peanuts elaborated with high-oleic and regular peanuts from Argentina.International Journal of Food Science and Technology,2006b,41,900~909.
[47] Nguyen TTH,Sakurai1 H,Miyahara M,et al.Comparative study on allergenic properties of high oleic and conventional peanuts.PolishJournal of Food and Nutrition Sciences,2003,Vol.12/53,SI 2,p.88~p.95.
[48] Nicoli MC.An introduction to food shelf life:definitions,basic concepts,and regulatory.In:Nicoli MC(Ed.)The Shelf Life Assessment Process.Shelf Life Assessment of Food.CRC Press,Boca Raton,FL,2012,pp.17~36.https: //doi.org/10.1016/B978-0-12-802230-6.00028-X
[49] O’Byrne DJ,Knauft DA,Shireman RB.Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles.Lipids.1997,32(7):687~695.
[50] O’Bryne DJ,O’Keefe SF,Shireman RB.Low-fat,monounsaturate-rich diets reduce susceptibility of low density lipoproteins to peroxidation ex vivo .Lipids,1998,33(2):149~157.
[51] Oh E,Pae S-B,Kim S et al. (Effect of monounsaturated fatty acid-enriched peanut consumption on serum lipid in high fat diet-induced mice).The Korean Journal of Food and Nutrition.2020,33(6):747~754.http: //www.koreascience.or.kr/article/JAKO202008540580760.pdf
[52] O’Keefe,SF,Wiley VA,Knauft DA.Comparison of oxidative stability of high-and normal-oleic peanut oils.Journal of the American Oil Chemists’Society,1993,70(5):489~492.https: //doi.org/10.1007/BF02542581
[53] Olmedo R,Ribotta P,Grosso NR.Oxidative stability,affective and discriminative sensory test of high oleic and regular peanut oil with addition of oregano essential oil.Journal of Food Science and Technology.2018,55(12):5133~5141.DOI:10.1007/s13197-018-3459-5
[54] Pérez A,Casas A,Fernández CM,Ramos MJ,Rodríguez L.Winterization of peanut biodiesel to improve the cold flow properties.Bioresour Technol.2010,101(19):7375~7381.doi:10.1016/j.biortech.2010.04.063
[55] Pokorný J,Parkányiová L,Réblová Z,et al.Changes on storage of peanut oils containing high levels of tocopherols andβ-carotene.Czech Journal of Food Sciences,2003,21(1):19~27.
[56] Redhead AK,Sanders E,Vu TC,et al.The effects of high-oleic peanuts as an alternate feed ingredient on performance,ileal digestibility,apparent metabolizable energy,and histology of the small intestine in laying hens.Transl Anim Sci.2021,5(1):txab015.doi:10.1093/tas/txab015[57] Reed KA,Gorbet DW,O’Keefe SF.Effect of chocolate coating on oxidative stability of normal and high oleic peanuts.Journal Food Lipids,2000,7:31~38.
[58] Reed KA,Sims CA,Gorbet DW,O’Keefe SF.Storage water activity affects flavor fade in high and normal oleic peanuts.Food Research International,2002,35,769~774.
[59] Riveros CG,Mestrallet MG,Gayol MF,et al.Effect of storage on chemical and sensory profiles of peanut pastes prepared with high-oleic and normal peanuts.Journal of the Science of Food and Agriculture,2010,90(15):2694~2699.
[60] Ryan L,Olmedo RH,Stutz G,et al.Effect of high oleic peanut oil consumption on plasma cholesterol,LDL,HDL and triglyceride levels analyzedin Albino Swiss mice.National Peanut Day.16 September 2010.General Cabrera,Córdoba.AR.XXV National Peanut Day.INTA-CIA.General Cabrera,Córdoba.AR.2010.pp.93~94.Available from:http: //www.ciacabrera.com.ar/docs/JORNADA%2025/32-%20Ryan%20-%20EFECTO%20DEL%20CONSUMO%20DE%20ACEITE%20DE%20MANI%20ALTO%20O...pdf
[61] Stephens AM,Dean LL,Davis JP,et al.Peanuts,peanut oil,and fat free peanut flour reduced cardiovascular disease risk factors and the development of atherosclerosis in Syrian golden hamsters.Journal of Food Science,2010,75(4):116~122.
[62] Sumainah GM,Sims CA,Bates RP,et al.Flavor and oxidative stability of peanut-sesame-soy blends.Journal of Food Science,2000,65(5):901~905.
[63] Swergart D.High oleic peanut chemistry&;finished product quality.APRES Post Harvest Quality Symposium.Francis Marion Hotel,Charleston,SC.July 15,2015.https: //apresinc.com/wp content/uploads/2015/08/Sweigart-Repaired-Slide-High-Oleic-Peanut-Quality-APRES-15Jul15.pdf
[64] Talcott ST,Duncan CE,Pozo-Insfran DD,et al.Polyphenolic and antioxidant changes during storage of normal,mid,and high oleic acid peanuts.Food Chemistry,2005,89(1):77~84.
[65] Teres S,Barcelo-Coblijn G,Benet M,et al.Oleic acid content is responsible for the reduction in blood pressure induced by olive oil.Proc.Natl.Acad.Sci.USA,2008,105:13811~13816.
[66] Toomer OT,Hulse-Kemp AM,Dean LL,et al.Feeding high-oleic peanuts to layer hens enhances egg yolk color and oleic fatty acid content in shell eggs.Poultry Science,2019a,98(4):1732~1748.doi:10.3382/ps/pey531
[67] Toomer OT,Livingston M,Wall B,et al.Feeding high-oleic peanuts to meat-type broiler chickens enhances the fatty acid profile of the meat produced.Poultry Science,2019b,99(4):2236~2245.https: //doi.org/10.1016/j.psj.2019.11.015
[68] Toomer OT,Livingston ML,Wall B,et al.Meat quality and sensory attributes of meat produced from broiler chickens fed a high oleic peanut diet.Poultry Science,2019c,98(10):5188~5197.doi:10.3382/ps/pez258
[69] Toomer OT,Sanders E,Vu TC,et al.The effects of high-oleic peanuts as an alternative feed ingredient on broiler performance,ileal digestibility,apparent metabolizable energy,and histology of the intestine.Translational Animal Sci,2020,4(3):txaa137.doi:10.1093/tas/txaa137
[70] Vassiliou EK,Gonzalez A,Garcia C,Tadros JH,Chakraborty G,ToneyJH.Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems.Lipids in Health and Diseases,2009,8:25.doi:10.1186/1476-511X-8-25
[71] Wang CT,Tang YY,Wang XZ,et al.Evaluation of groundnut genotypes from China for quality traits.Journal of SAT Agricultural Research,2011,vol.9.Available at:http: //ejournal.icrisat.org/Volume9/Groundnut/Evaluation.pdf
[72] Wang H,Yu ST,Wang CT,et al.Effect of different aging treatments on the vigor of high-oleic acid peanut seeds.IOP Conference Series:Earth and Environmental Science,Volume 346,5th International Conference on Agricultural and Biological Sciences(ABS)21-24 July 2019,Macau.
[73] Wang ML,Khera P,Pandey MK,et al.Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid.synthesis pathway in peanut( Arachis hypogaea L.).PloS one,2015,10(4),e0119454.
[74] Wang S,Adhikari K,Hung Y-C,et al.Effects of short storage on consumer acceptability and volatile compound profile of roasted peanuts.Food Packaging and Shelf Life,2017,13:27~34.
[75] Wilkin JD,Ashton IP,Fielding LM,et al.Storage stability of whole and nibbed,conventional and high oleic peanuts( Arachis hypogeae L.).Food and Bioprocess Technology,2014,7:105~113.
[76] Wilson JN,Baring MR,Burow MD,et al.Generation means analysis of fatty acid composition in peanut.Journal of Crop Improvement,2013,27(4):430~443.
[77] Yamaki T,Nagamine I,Fukumoto K,et al.High oleic peanut oil modulates promotion stage in lung tumorigenesis of mice treated with methyl nitrosourea.Food Science and Technology Research,2005,11(2):231~235.
[78] Zhang QY,Wang XZ,Tang YY,et al.Characterization of 9newly bred peanut genotypes for seed fatty acid profiles suitable for biodiesel production.Advanced Materials Research,2015,1073-1076:1134~1137.
[79] Zhao Z,Shi A,Wang Q,et al.High oleic acid peanut oil and extra virgin olive oil supplementation attenuate metabolic syndrome in rats by modulating the gut microbiota.Nutrients,2019,11(12):3005.doi:10.3390/nu11123005