[1] Feynman R P. There's plenty of room at the bottom[J]. Engineering and Science, 1960, 23(5):22-36.
[2] Kroto H W, Heath J R, O'Brien S C, et al. C 60 :Buckminsterfullerene[J]. Nature, 1985, 318(6042):162-163.
[3] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[4] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[5] Whitesides G M, Boncheva M. Beyond molecules:Self-assembly of mesoscopic and macroscopic components[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8):4769-4774.
[6] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
[7] Li Z, Liu Z, Sun H Y, et al. Superstructured assembly of nanocarbons:Fullerenes, nanotubes, and graphene[J]. Chemical Reviews, 2015, 115(15):7046-7117.
[8] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene:Versatile building blocks for carbon-based materials[J]. Small, 2010, 6(6):711-723.
[9] Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4):217-224.
[10] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1):228-240.
[11] Xu Z, Gao C. Graphene fiber:A new trend in carbon fibers[J]. Mateirals Today, 2015, 18(9):480-492.
[12] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011, 2:571.
[13] Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18):2554-2560.
[14] Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6):424-428.