购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1] Boehm H P, Setton R, Stumpp E. Nomenclature and terminology of graphite intercalation compounds(IUPAC Recommendations 1994)[J]. Pure and Applied Chemistry, 1994, 66(9):1893-1901.

[2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.

[3] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.

[4] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.

[5] Liu F, Ming P B, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B, 2007, 76(6):064120.

[6] Lindsay L, Broido D A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene[J]. Physical Review B, 2010, 81(20):262-265.

[7] Zandiatashbar A, Lee G H, An S J, et al. Effect of defects on the intrinsic strength and stiffness of graphene[J]. Nature Communications, 2014, 5:3186.

[8] Min K, Aluru N R. Mechanical properties of graphene under shear deformation[J]. Applied Physics Letters, 2011, 98(1):013113.

[9] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204.

[10] Dawlaty J M, Shivaraman S, Strait J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J]. Applied Physics Letters, 2008, 93(13):131905.

[11] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308.

[12] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.

[13] Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975):213-216.

[14] Ghosh S, Bao W Z, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7):555-558.

[15] Ren Y J, Zhu C F, Cai W W, et al. Detection of sulfur dioxide gas with graphene field effect transistor[J]. Applied Physics Letters, 2012, 100(16):163114.

[16] Hu S, Lozada-Hidalgo M, Wang F C, et al. Proton transport through one-atom-thick crystals[J]. Nature, 2014, 516(7530):227-230.

[17] Zhao W F, Fang M, Wu F R, et al. Preparation of graphene by exfoliation of graphite using wet ball milling[J]. Journal of Materials Chemistry, 2010, 20(28):5817-5819.

[18] Su C Y, Lu A Y, Xu Y P, et al. High-quality thin graphene films from fast electrochemical exfoliation[J]. ACS Nano, 2011, 5(3):2332-2339.

[19] Chen C H, Yang S W, Chuang M C, et al. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation[J]. Nanoscale, 2015, 7(37):15362-15373.

[20] Xia Z Y, Pezzini S, Treossi E, et al. The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques:A nanoscale study[J]. Advanced Functional Materials, 2013, 23(37):4684-4693.

[21] Parvez K, Li R J, Puniredd S R, et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics[J]. ACS Nano, 2013, 7(4):3598-3606.

[22] Rao K S, Senthilnathan J, Liu Y F, et al. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite[J]. Scientific Reports, 2014, 4:4237.

[23] Wang J Z, Manga K K, Bao Q L, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. Journal of the American Chemical Society, 2011, 133(23):8888-8891.

[24] Yang S, Lohe M R, Müllen K, et al. New-generation graphene from electrochemical approaches:Production and applications[J]. Advanced Materials, 2016, 28(29):6213-6221.

[25] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9):563-568.

[26] Ciesielski A, Samorì P. Graphene via sonication assisted liquid-phase exfoliation[J]. Chemical Society Reviews, 2014, 43(1):381-398.

[27] Robinson J A, Wetherington M, Tedesco J L, et al. Correlating Raman spectral signatures with carrier mobility in epitaxial graphene:A guide to achieving high mobility on the wafer scale[J]. Nano Letters, 2009, 9(8):2873-2876.

[28] Geim A K. Graphene:Status and prospects[J]. Science, 2009, 324(5934):1530-1534.

[29] Yu Q K, Lian J, Siriponglert S, et al. Graphene segregated on Ni surfaces and transferred to insulators[J]. Applied Physics Letters, 2008, 93(11):113103.

[30] Zhang Y, Gomez L, Ishikawa F N, et al. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition[J]. The Journal of Physical Chemistry Letters, 2010, 1(20):3101-3107.

[31] Li X S, Cai W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314.

[32] Geng D C, Wu B, Guo Y L, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(21):7992-7996.

[33] Zeng M Q, Tan L F, Wang J, et al. Liquid metal:An innovative solution to uniform graphene films[J]. Chemistry of Materials, 2014, 26(12):3637-3643.

[34] Chen X D, Chen Z L, Jiang W S, et al. Fast growth and broad applications of 25-inch uniform graphene glass[J]. Advanced Materials, 2017, 29(1):1603428.

[35] Vlassiouk I V, Stehle Y, Pudasaini P R, et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates[J]. Nature Materials, 2018, 17(4):318-322.

[36] Cai Z Y, Liu B L, Zou X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J]. Chemical Reviews, 2018, 118(13):6091-6133.

[37] He H Y, Klinowski J, Forster M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1-2):53-56.

[38] Paredes J I, Villar-Rodil S, Martínez-Alonso A, et al. Graphene oxide dispersions in organic solvents[J]. Langmuir, 2008, 24(19):10560-10564.

[39] Hummers W S Jr, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.

[40] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8):4806-4814.

[41] Chen J, Yao B W, Li C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64:225-229.

[42] Zhang M, Wang Y L, Huang L, et al. Multifunctional pristine chemically modified graphene films as strong as stainless steel[J]. Advanced Materials, 2015, 27(42):6708-6713.

[43] Eigler S, Enzelberger-Heim M, Grimm S, et al. Wet chemical synthesis of graphene[J]. Advanced Materials, 2013, 25(26):3583-3587.

[44] Chen J, Zhang Y, Zhang M, et al. Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups[J]. Chemical Science, 2016, 7(3):1874-1881.

[45] Dong L, Chen Z X, Lin S, et al. Reactivity-controlled preparation of ultralarge graphene oxide by chemical expansion of graphite[J]. Chemistry of Materials, 2017, 29(2):564-572.

[46] Dimiev A M, Tour J M. Mechanism of graphene oxide formation[J]. ACS Nano, 2014, 8(3):3060-3068.

[47] Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18):2554-2560.

[48] Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials, 2009, 19(12):1987-1992.

[49] Chua C K, Pumera M. Chemical reduction of graphene oxide:A synthetic chemistry viewpoint[J]. Chemical Society Reviews, 2014, 43(1):291-312.

[50] Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7):4324-4330.

[51] Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials, 2017, 29(27):1700589.

[52] Pei S F, Cheng H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9):3210-3228.

[53] Chen Y N, Fu K, Zhu S Z, et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors[J]. Nano Letters, 2016, 16(6):3616-3623. N5O5Ce7fxib/cq+lfyvCc1fegblh8++xdxWK2CVLReZuz4r46a9XqyGsPXW+HBMU

点击中间区域
呼出菜单
上一章
目录
下一章
×