购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1]GEIM A K,NOVOSELOV K S.The rise of graphene.Nature Mater.,2007,6:183-191.

[2]CHARLIER JC,EKLUND PC,ZHU J,et al.Electron and phonon properties of graphene:Their relationship with carbon nanotubes.Top.Appl.Phys.,2008,111:673-709.

[3]WALLACE PR.The band theory of graphite.Phys.Rev.,1947,71:622-634.

[4]ZHANG Y,TAN YW,STORMER H L,et al.Experimental observation of the quantum Hall effect and Berry's phase in graphene.Nature,2005,438:201-204.

[5]DU X I,etal.Fractional quantum Hall effectand insulating phase of Dirac electrons in graphene.Nature,2009,462:192-195.

[6]LEMMEM C,ECHTERMEYER T J,BAUSM,et al.A graphene field-effect device.IEEE Electr.Device Lett.,2007,28:282-284.

[7]HAN M Y,OZYILMAZ B,ZHANG Y,et al.Energy band-gap engineering of graphene nanoribbons.Phys.Rev.Lett.,2007,98:206805.

[8]LIN Y M,et al.100-GHz transistors from wafer-scale epitaxial graphene.Science,2010,327:662.

[9]CASIRAGHIC,et al.Rayleigh imaging of graphene and graphene layers.Nano Lett.,2007,7:2711-2717.

[10]BLAKE P,et al.Making graphene visible.Appl.Phys.Lett.,2007,91:063124.

[11]NAIR R R,et al.Fine-structure constant defines transparency of graphene.Science,2008,320:1308.

[12]HASAN T,et al.Nanotube-polymer composites for ultrafast photonics.Adv.Mater.,2009,21:3874-3899.

[13]SUN Z,et al.Graphenemode-locked ultrafast laser.ACSNano,2010,4:803-810.

[14]STÖHR R J,KOLESOV R,PFLAUM J,etal.Fluorescence of laser-created electron-hole plasma in graphene.Physical Review B,2010,82(12):121408.

[15]LIU C H,MAK K F,SHAN J,et al.Ultrafast photoluminescence from graphene.Physical Review Letters,2010,105(12):127404.

[16]WU S,et al.Nonlinear photoluminescence from graphene.Abstract number:BAPS.2010.MAR.Z22.11.Portland,Oregon:APSMarch Meeting,2010.

[17]HARTSCHUH A,et al.Excited state energies and decay dynamics in carbon nanotubes and graphene.EMRSSpring Meeting,2010.

[18]GOKUST,etal.Making graphene luminescent by oxygen plasma treatment.ACSNano,2009,3:3963-3968.

[19]EDA G,et al.Blue photoluminescence from chemically derived graphene oxide.Adv.Mater.,2009,22:505-509.

[20]SUN X,et al.Nano-graphene oxide for cellular imaging and drug delivery.Nano Res.,2008,1:203-212.

[21]LUO Z,VORA PM,MELE E J,et al.Photoluminescence and band gap modulation in graphene oxide.Appl.Phys.Lett.,2009,94:111909.

[22]NETO A H C,GUINEA F,PERESNM R,etal.The electronic properties of graphene.Reviews ofModern Physics,2009,81(1):109.

[23]TAKAIK,TSUJIMURA S,KANG F,et al.Graphene:Preparations,Properties,Applications,and Prospects.Amsterdam:Elsevier,2019.

[24]WALLACE P R.The band theory of graphite.Phys.Rev.,1942,7:622-634.

[25]CASTRO N A H,GUINEA F,PERES N M R,et al.The electronic properties of graphene.Rev.Mod.Phys,2009,81:109.

[26]ANDO T.Theory of electronic states and transport in carbon nanotubes.J.Phys.Soc.Jpn.,2005,74:777-817.

[27]KOSHINOM,ANDO T.Orbital diamagnetism inmultilayer graphenes:systematic study with the effective mass approximation.Phys.Rev.B,2007,76:085425.

[28]YOSHIZAWA K,OKAHARA K,SATO T,et al.Molecular orbital study of pyrolytic carbons based on small clustermodels.Carbon,1994,32:1517-1522.

[29]FUJITA M,WAKABAYASHIK,NAKADA K,et al.Peculiar localized state at zigzag graphite edge.J.Phys.Soc.Jpn.,1996,65:1920-1923.

[30]CASIRAGHIC,et al.Rayleigh imaging of graphene and graphene layers.Nano Lett.,2007,7:2711-2717.

[31]BLAKE P,et al.Making graphene visible.Appl.Phys.Lett.,2007,91:063124.

[32]KUZMENKO A B,VAN HEUMEN E,CARBONE F,et al.Universal optical conductance of graphite.Phys.Rev.Lett.,2008,100:117401.

[33]WANG F,et al.Gate-variable optical transitions in graphene.Science,2008,320:206-209.

[34]MAK K F,SHAN J,HEINZT F.Electronic structure of few-layer graphene:experimental demonstration of strong dependence on stacking sequence.Phys.Rev.Lett.,2009,104:176404.

[35]BONACCORSO F,SUN Z,HASAN T A,et al.Graphene photonics and optoelectronics.Nature Photonics,2010,4(9):611.

[36]YAMASHITA S.Nonlinear optics in carbon nanotube,graphene,and related 2D materials.APL Photonics,2019,4(3):034301.

[37]BOYD RW.Nonlinear optics.Academic Press,2020.

[38]LEUTHOLD J,KOOS C,FREUDE W.Nonlinear silicon photonics.Nature Photonics,2010,4(8):535-544.

[39]AUTERE A,JUSSILA H,DAIY,et al.Nonlinear opticswith 2D layeredmaterials.Adv.Mater.,2018,30:1705963.

[40]YAMASHITA S.A tutorial on nonlinear photonic applications of carbon nanotube and graphene(Invited Tutorial).J.Lightwave Technol.,2012,30(4):427-447.

[41]KELLER U,WEINGARTEN K J,KARTNER F X,et al.Semiconductor saturable absorber mirrors(SESAM's)for femtosecond to nanosecond pulse generation in solid-state lasers.IEEE J.Sel.Top.Quantum Electron.,1996,2(3):435-453.

[42]XU JL,LIX L,HE JL,et al.Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser.Applied Physics Letters,2011,99(26):261107.

[43]YAMASHITA S,SAITO Y,CHOIJH.Carbon Nanotube and Graphene Photonics.Woodhead Publishing,2013.

[44]MARTINEZ A,SUN Z.Nanotube and graphene saturable absorbers for fibre lasers.Nat.Photonics,2013,7:842-845.

[45]YAMASHITA S,MARTINEZ A,XU B,Short pulse fiber lasersmode-locked by carbon nanotube and graphene(Invited).Opt.Fiber Technol.,2014,20(6):702-713.

[46]BREUSING M,ROPERS C,ELSAESSER T.Ultrafast carrier dynamics in graphite.Phys.Rev.Lett.,2009,102:086809.

[47]KAMPFRATH T,PERFETTIL,SCHAPPER F,et al.Strongly Coupled Optical Phonons in the Ultrafast Dynamics of the Electronic Energy and Current Relaxation in Graphite.Phys.Rev.Lett.,2005,95:187403.

[48]LAZZERIM,PISCANEC S,MAURIF,et al.Electronic transport and hot phonons in carbon nanotubes.Phys.Rev.Lett.,2005,95:236802.

[49]BAO Q,ZHANG H,WANG Y,etal.Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers.Adv.Funct.Mater.,2009,19:3077-3083.

[50]TANW D,SU C Y,KNIZE R J,et al.Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber.Appl.Phys.Lett.,2010,96:031106.

[51]ZHANG H,BAOQ,TANGD,etal.Large energy soliton erbium-doped fiber laserwith a graphene-polymer compositemode locker.Appl.Phys.Lett.,2009,95:141103.

[52]BAO Q L,ZHANG H,NIZ,etal.Monolayer graphene as a saturable absorber in amode-locked laser.Nano Res.,2011,4(3):297-307.

[53]SUN Z,HASAN T,TORRISI F,et al.Graphene mode-locked ultrafast laser.ACS Nano,2010,4(2):803-810.

[54]LEECC,MILLER JM,SCHIBLITR.Doping-induced changes in the saturable absorption ofmonolayer graphene.Appl.Phys.B,2012,108:129-135.

[55]MARTINEZ A,FUSE K,YAMASHITA S.Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers.Appl.Phys.Lett.,2011,99:121107.

[56]MARINIA,COX JD,GARCÍA DE ABAJO F J.Theory of graphene saturable absorption.Phys.Rev.B,2017,95:125408.

[57]VASKO F T.Saturation of interband absorption in graphene.Phys.Rev.,2010,B 82:245422.

[58]BAEK IH,LEEHW,BAE S,etal.Efficientmode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber.Appl.Phys.Express,2012,5(3):032701.

[59]ZHENG Z,ZHAO C,LU S,et al.Microwave and optical saturable absorption in graphene.Opt.Express,2012,20(21):23201-23214.

[60]MURALIR,BRENNER K,YANG Y,et al.Resistivity of graphene nanoribbon interconnects.IEEE Electron Device Letters,2009,30(6):611-613.

[61]GRUBER E,WILHELM R,PÉTUYA R,et al.Ultrafast electronic response of graphene to a strong and localized electric field.Nature Communications,2016,7:13948.

[62]FREITAGM,CHIU H,STEINER M,et al.Thermal infrared emission from biased graphene.Nature Nanotechnology,2010,5(7):497.

[63]LUXMOORE I,ADLEM C,POOLE T,et al.Thermal emission from large area chemical vapor deposited graphene devices.Applied Physics Letters,2013,103(13):131906.

[64]ENGEL M,STEINER M,LOMBARDO A,et al.Light-matter interaction in amicrocavity-controlled graphene transistor.Nature Communications,2012,3:906.

[65]BAEM,ONG Z,ESTRADA D,etal.Imaging,simulation,and electrostatic control of power dissipation in graphene devices.Nano Letters,2010,10(12):4787-4793.

[66]LUO F,FAN Y,PENG G,etal.Graphene Thermal Emitter with Enhanced Joule Heating and Localized Light Emission in Air.ACSPhotonics,2019,6(8):2117-2125.

[67]FREITAG M,STEINER M,MARTIN Y,et al.Energy dissipation in graphene field-effect transistors.Nano Letters,2009,9(5):1883-1888.

[68]CHEN J,JANG C,ADAM S,et al.Charged-impurity scattering in graphene.Nature Physics,2008,4(5):377.

[69]CHEN J,JANG C,XIAO S,et al.Intrinsic and extrinsic performance limits of graphene devices on SiO 2 .Nature Nanotechnology,2008,3(4):206.

[70]POPE,VARSHNEY V,ROY A.Thermal properties of graphene:Fundamentals and applications.MRS Bulletin,2012,37(12):1273-1281.

[71]KIM Y,KIM H,CHO Y,et al.Bright visible light emission from graphene.Nature Nanotechnology,2015,10(8):676.

[72]PARK M,LEE A,RHOH,etal.Large area thermal lightemission from autonomously formed suspended graphene arrays.Carbon,2018,136:217-223.

[73]SON S,ŠIŠKINSM,MULLANC,etal.Graphene hot-electron lightbulb:incandescence from hBN-encapsulated graphene in air.2D Materials,2017,5(1):011006.

[74]KIM Y,GAO Y,SHIUE R,et al.Ultrafast graphene light emitters.Nano Letters,2018,18(2):934-940.

[75]MIYOSHIY,FUKAZAWA Y,AMASAKA Y,et al.High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer.Nature Communications,2018,9(1):1279.

[76]CHEN J,JANG C,XIAO S,et al.Intrinsic and extrinsic performance limits of graphene devices on SiO 2 .Nature Nanotechnology,2008,3(4):206.

[77]MERIC I,HAN M,YOUNG A,et al.Current saturation in zero-bandgap,top-gated graphene field-effect transistors.Nature Nanotechnology,2008,3(11):654.

[78]ROTKIN S,PEREBEINOSV,PETROV A,et al.An essentialmechanism of heat dissipation in carbon nanotube electronics.Nano Letters,2009,9(5):1850-1855.

[79]KOH Y,LYONSA,BAEM,et al.Role of remote interfacial phonon(RIP)scattering in heat transport across graphene/SiO 2 interfaces.Nano Letters,2016,16(10):6014-6020.

[80]SHIUE R,GAO Y,TAN C,et al.Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity.Nature Communications,2019,10(1):109.

[81]KHORASANI S.Tunable spontaneous emission from layered graphene/dielectric tunnel junctions.IEEE Journal of Quantum Electronics,2014,50(5):307-313.

[82]BEAMSR,BHARADWAJP,NOVOTNY L.Electroluminescence from graphene excited by electron tunneling.Nanotechnology,2014,25(5):055206.

[83]SVINTSOV D,DEVIZOROVA Z,OTSUJIT,et al.Plasmons in tunnel-coupled graphene layers:Backward waves with quantum cascade gain.Physical Review B,2016,94(11):115301.

[84]DE VEGA S,GARCÍA DE ABAJO F J.Plasmon generation through electron tunneling in graphene.ACS Photonics,2017,4(9):2367-2375.

[85]ENALDIEV V,BYLINKIN A,SVINTSOV D.Plasmon-assisted resonant tunneling in graphene-based heterostructures.Physical Review B,2017,96(12):125437.

[86]NAMGUNG S,MOHR D A,YOO D,et al.Ultrasmall plasmonic single nanoparticle light source driven by a graphene tunnel junction.ACSNano,2018,12(3):2780-2788.

[87]DE VEGA S,GARCÍA DE ABAJO F J.Plasmon generation through electron tunneling in twisted doublelayer graphene and metal-insulator-graphene systems.Physical Review B,2019,99(11):115438.

[88]PARZEFALL M,SZABÓÁ,TANIGUCHI T,et al.Light from van der Waals quantum tunneling devices.Nature Communications,2019,10(1):292.

[89]NAMGUNG S,MOHR D,YOO D,et al.Ultrasmall plasmonic single nanoparticle light source driven by a graphene tunnel junction.ACSNano,2018,12(3):2780-2788.

[90]PARZEFALL M,SZABÓÁ,TANIGUCHI T,et al.Light from van der Waals quantum tunneling devices.Nature Communications,2019,10(1):292.

[91]肖廷辉,于洋,李志远.石墨烯—硅基混合光子集成电路.物理学报,2017,66(21):217802.

[92]KAMINER I,KATAN Y,BULJAN H,etal.Efficient plasmonic emission by the quantum erenkov effect from hot carriers in graphene.Nature Communications,2016,7:ncomms11880.

[93]BELTAOS A,BERGREN A,BOSNICK K,et al.Visible light emission in graphene field effect transistors.Nano Futures,2017,1(2):025004.

[94]ESSIG S,MARQUARDT C,VIJAYARAGHAVAN A,et al.Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene.Nano Letters,2010,10(5):1589-1594.

[95]COX J,MARINIA,GRARCÍA DE ABAJO F J.Plasmon-assisted high-harmonic generation in graphene.Nature Communications,2017,8:14380.

[96]PAN D,ZHANG J,LI Z,et al.Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots.Advanced Materials,2010,22(6):734-738.

[97]HANSON G.Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide.Journal of Applied Physics,2008,104(8):084314.

[98]HANSON G.Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene.Journal of Applied Physics,2008,103(6):064302.

[99]黄保虎.石墨烯在可调光器件中的应用基础研究.南京:东南大学,2019.

[100]LI Z,HENRIKSEN E,JIANG Z,et al.Dirac charge dynamics in graphene by infrared spectroscopy.Nature Physics,2008,4(7):532.

[101]PERESN,GUINEA F,NETO A.Electronic properties of disordered two-dimensional carbon.Physical Review B,2006,73(12):125411.

[102]GUSYNIN V,SHARAPOV S,CARBOTTE J.Unusual microwave response of Dirac quasiparticles in graphene.Physical Review Letters,2006,96(25):256802.

[103]JABLAN M,BULJAN H,SOLJAĈIM.Plasmonics in graphene at infrared frequencies.Physical Review B,2009,80(24):245435.

[104]BAO Q,ZHANG H,WANG B,et al.Broadband graphene polarizer.Nature Photonics,2011,5(7):411.

[105]NOVOSELOV K S,GEIM A K,MOROZOV SV,et al.Two-dimensional gas ofmassless Dirac fermions in graphene.Nature,2005,438(7065):197-200.

[106]ADAM S,HWANG E H,GALITSKI V M,et al.A self-consistent theory for graphene transport.Proceedings of the National Academy of Sciences of the United States of America,2007,104(47):18392-18397.

[107]WU B,TUNCER H,NAEEM M,etal.Experimental demonstration of a transparent graphenemillimetre wave absorber with 28%fractional bandwidth at140GHz.Scientific Reports,2014,4:4130.

[108]DHOOT A S,YUEN JD,HEENEY M,et al.Beyond themetal-insulator transition in polymer electrolyte gated polymer field-effect transistors.Proceedings of the National Academy of Sciences of the United States of America,2006,103(32):11834-11837.

[109]LU C G,FU Q,HUANG SM,et al.Polymer electrolyte-gated carbon nanotube field-effect transistor.Nano Letters,2004,4(4):623-627.

[110]王健.石墨烯对电磁波调控机理及应用研究.南京:东南大学,2017.

[111]GAN X T,SHIUE R J,GAO Y D,et al.High-Contrast Electrooptic Modulation of a Photonic Crystal Nanocavity by Electrical Gating of Graphene.Nano Letters,2013,13(2):691-696.

[112]HU H,ZHAIF,HU D,et al.Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage.Nanoscale,2015,7(46):19493-19500.

[113]JU L,GENG B,HORNG J,et al.Graphene plasmonics for tunable terahertz metamaterials.Nature Nanotechnology,2011,6(10):630.

[114]DASA,PISANA S,CHAKRABORTY B,et al.Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor.Nature Nanotechnology,2008,3(4):210-215.

[115]LIU JK,LIQQ,ZOU Y,etal.The Dependence ofGraphene Raman D-band on Carrier Density.Nano Letters,2013,13(12):6170-6175.

[116]POLAT E O,KOCABASC.Broadband Optical Modulators Based on Graphene Supercapacitors.Nano Letters,2013,13(12):5851-5857.

[117]KIM B J,JANG H,LEE SK,et al.High-Performance Flexible Graphene Field Effect Transistorswith Ion Gel Gate Dielectrics.Nano Letters,2010,10(9):3464-3466.

[118]CHEN C F,PARK CH,BOUDOURISBW,et al.Controlling inelastic light scattering quantum pathways in graphene.Nature,2011,471(7340):617-620.

[119]BALCIO,POLAT E O,KAKENOV N,et al.Graphene-enabled electrically switchable radar-absorbing surfaces.Nature Communications,2015,6:6628.

[120]POLAT E O,BALCIO,KOCABASC.Graphene based flexible electrochromic devices.Scientific Reports,2014,4:6484.

[121]KAKENOV N,BALCIO,POLATEO,etal.Broadband terahertzmodulators using self-gated graphene capacitors.Journal of the Optical Society of America B-Optical Physics,2015,32(9):1861-1866.

[122]KONSTANTATOSG,BADIOLIM,GAUDREAU L,et al.Hybrid graphene-quantum dot phototransistorswith ultrahigh gain.Nature Nanotechnology,2012,7(6):363-368.

[123]李占成.高质量石墨烯的可控制备.合肥:中国科学技术大学,2012.

[124]SUN Z H,LIU Z K,LI JH,et al.Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dotswith Ultrahigh Responsivity.Advanced Materials,2012,24(43):5878-5883.

[125]WANG Q,GUO X F,CAI L C,et al.TiO 2 -decorated graphenes as efficient photoswitches with high oxygen sensitivity.Chemical Science,2011,2(9):1860-1864. 9QejZOuRpSmhUh0Vhw9cWTmq1TAu4PtA6ycGeEXmh8CVvkzu8uN8Ci4MFlDYnxYk

点击中间区域
呼出菜单
上一章
目录
下一章
×