购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

积分是什么

微分与变化率有关,积分则与很多微小增量的和有关。这种关系看上去不显而易见,但是确实存在。

我们从一个函数 f t )的图像(如图2-4所示)开始讲起。

图2-4 f t )的图像

积分的核心问题是计算 f t )定义的曲线与坐标轴围成的面积。为了让定义更精确,我们来看两个变量值 t = a t = b 之间的函数,这两个值被称作积分限(limit of integration)。我们要计算的是图2-5上的阴影区域的面积。

图2-5 积分限

为了计算该区域的面积,我们把阴影区域分割成非常小的矩形,然后再来求它们各自的面积之和(如图2-6所示)。

图2-6 积分示意图

当然这是一个近似,不过当我们令矩形的宽度趋近于0时,这个近似也趋近精确。为了完成这个过程,我们首先把 t = a t = b 之间的区间分成 N 个子区间,每个子区间的宽度等于Δ t 。当一个矩形在 t 点处时,它的宽度是Δ t 、高度等于 f t )在那一点的值。这个矩形的面积δ A 等于:

δ A = f t )Δ t

下面我们把所有独立的矩形面积加起来计算所求总面积的近似值。这个近似值等于:

其中大写希腊字母∑表示对由 i 定义的连续值的求和。例如,当 N =3,有:

这里 t i 表示沿着 t 轴第 i 个矩形的位置。

为了得到精确的答案,我们令Δ t 趋近于0,也就是矩形的数目趋近于无穷大,来计算近似面积的极限。这个过程定义了 f t )在 t = a t = b 之间的定积分(definite integral)。我们把它写成:

符号∫被称作积分号(summa),它取代了求和号,就像在微分里d t 取代了Δ t 。函数 f t )被称作被积函数(integrand)。

我们换一个记号,用 T 表示其中一个积分限。特别地,用 T 代替 b 从而得到积分:

其中,我们把 T 看作一个变量,而不是 t 的确定值。这个例子中的积分定义了一个 T 的函数, T 可以取 t 的任意值。因为当 T 取一个定值的时候积分也是一个定值,所以这个积分是 T 的函数。

因此可以用 f t )定义另一个函数 F T )。我们也可以令 a 变化,这里就不赘述了。函数 F T )被称作 f t )的不定积分(indefinite integral)。因为这个积分是从 a 到一个变量的积分,而不是从一个定值到另一个定值的积分,所以它是不定的。通常,我们把这种积分写成不带积分限的形式:

微积分基本定理(The fundamental theorem of calculus)是数学中最简单而优美的定理之一,揭示了积分和微分之间深刻的关系。该定理讲的是,如果 ,那么有:

为了证明它,我们给 T 增加一个微小增量,令其从 T 变到 T +∆ t 。因此,我们得到一个新的积分:

也就是说,在图2-6所示的阴影区域基础上,我们在 t = T 处增加了一个宽度为Δ t 的矩形。实际上, F T t )- F T )刚好是增加的矩形面积,即 f T )Δ t 。所以有:

F T +∆ t )− F T )= f T )∆ t

用这个式子除以∆ t 得到:

当计算令∆ t 趋近于0的极限时,我们可以得到与 F f 关联的基本定理:

我们可以忽略 t T 的差别,把这个式子简写成:

也就是说,积分和微分是逆运算: 某个函数的积分的微分是原始被积函数。

已知 F t )的导数是 f t ),我们可以完全确定 F t )吗?几乎可以,只差一点儿。问题在于给 F t )加上一个常数不会改变它的导数。因此,已知 f t )的条件下它的不定积分是不明确的,但差别只在一个常数。

我们求解几个不定积分来看看微积分基本定理是如何使用的。我们来求解幂函数 f t )= t n 的不定积分。考虑到:

于是有:

我们需要做的是找到导数等于 t n 的函数 F ,这很容易。

在上一讲里,我们知道对任意 m 有:

如果我们用 m = n +1进行替换,上式便变成:

两侧同时除以 n +1得到:

因此,我们发现 t n 的导数。代入相关变量可以得到:

还缺少一个需要加到 F 上的任意常数。这个不定积分的结果应该写成:

其中 c 是一个常数,它需要通过其他方法确定。

这个待定的常数与另一个任意选取的我们记为 a 的积分终点密切相关。我们利用下面的式子看看 a 如何确定那个待定常数。

我们令两个积分限相等,即 T = a 。这个情况下,积分等于0。你可以用这个事实确定 c

一般而言,微积分基本定理可以写成:

另一种用一个等式表达积分基本定理的途径是:

换句话说,对导数积分得到它的原函数(取决于待定常数)。

下面给出一些积分公式:

本讲经典力学练习

练习9: 通过逆转微分的过程并增加待定常数,求解下面各个表达式的不定积分:

练习10: 利用微积分基本定理计算练习1中各个表达式的定积分,其中积分上下限都设为 t =0和 t = T

练习11: 假设练习1中的表达式表示某个质点的加速度。用这些表达式对时间变量积分一次计算速度,然后再积分一次计算运动轨迹。因为我们将用 t 表示积分上限,所以这个练习里我们采用辅助积分变量 t ',积分限为从 t '=0到 t '= t 。即,积分表达式是: QHtIcG5tEaLKxPcGNpzIQXz1eynKh8WfUfOfp8vcIzz6jW4CfUxOOWQmnF9ISUi0

点击中间区域
呼出菜单
上一章
目录
下一章
×