购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1] 国家消化内镜专业质控中心,国家消化系统疾病临床医学研究中心(上海),国家消化道早癌防治中心联盟,等.中国早期食管癌及癌前病变筛查专家共识意见(2019年,新乡)[J].中华消化内镜杂志,2019,36(11):793-801.

[2] FREDDIE, BRAY, JACQUES, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. [J]. CA: a cancer journal for clinicians, 2018, 68 (6): 394-424.

[3] 李琮宇.河南食管癌高发区食管癌家系收集和遗传流行病学分析[D].郑州:郑州大学,2007.

[4] 杨艳芳.肥城市食管鳞癌衍变阶段的危险因素及生物标志物研究[D].济南:山东大学,2008.

[5] 侯钱英.肥城市2014—2017年居民死因分析[D].济南:山东大学,2018.

[6] 周英智.肥城市食管鳞癌不同衍变阶段的影响因素研究[D].济南:山东大学,2007.

[7] 葛均波,徐永健,王辰.内科学[M].9版.北京:人民卫生出版社,2018.

[8] 张立玮.高发区人群食管、贲门癌早诊早治研究[D].石家庄:河北医科大学,2007.

[9] 邹文娣.高发区食管贲门癌内镜筛查及癌前病变自然史队列研究[D].石家庄:河北医科大学,2011.

[10] 王洋.山东省肥城农村食管癌筛查及居民认知现况和早诊早治意愿调查研究[D].大连:大连医科大学,2009.

[11] 甄玉洁.叶酸代谢相关基因甲基化与哈萨克族食管癌及预后关系的研究[D].乌鲁木齐:新疆医科大学,2017.

[12] 洛黛(ADAMA KOROMA).中国江苏淮安食管癌高发区食管癌前病变相关影响因素的流行病学调查研究[D].南京:东南大学,2018

[13]刘亚洲,娄培安,董宗美,等.2014—2016年徐州市城市癌症早诊早治筛查分析[J].江苏预防医学,2018,29(4): 382-385,388.

[14] KRISHNAMOORTHI R, BORAH B, HEIEN H, et al. Rates and predictors of progression to esophageal carcinoma in a large population-based Barrett’s esophagus cohort [J]. Gastrointest Endosc, 2016, 84 (1): 40-46.

[15] 陈梦如.扬中市食管癌分子流行病学研究及早诊早治实施评价[D].上海:复旦大学,2008.

[16] 潘媛,张丽娟,潘恩春,等.淮安市居民早期食管癌危险因素的病例对照研究[J].江苏预防医学,2017,28(5):515-517.

[17] 鲍刘莉.饮食因素及血清中几种B族维生素含量与食管癌前病变关系的研究[D].扬州:扬州大学,2013.

[18]庄璐,马丹,李兆申.食管癌危险因素研究进展[J].胃肠病学和肝病学杂志,2015(9): 1141-1145.

[19] 杨孝荣.高发地区食管鳞癌的病因与体细胞突变图谱研究[D].济南:山东大学,2018.

[20] 尹钰,帕力达·托了汗,陈艳.叶酸水平与食管癌关系的Meta分析[J].新疆医科大学学报,2015,38(6):748-753.

[21] 刘璇芝.食管癌叶酸受体α表达水平的研究[D].汕头:汕头大学,2008.

[22] LI S, SHEN H, LI J, et al. Prevalence of the integration status for human papillomavirus 16 in esophageal carcinoma samples [J]. Turk J Gastroenterol, 2018, 29 (2): 157-163.

[23] KOUNTOURAS J, POLYZOS S A, ZEGLINAS C, et al. Helicobacter pylori-related metabolic syndrome as predictor of progression to esophageal carcinoma in a subpopulation-based Barrett’s esophagus cohort [J]. Gastrointest Endosc, 2017, 85 (2): 462-463.

[24] KAYE P V, HAIDER S A, ILYAS M, et al. Barrett’s dysplasia and the Vienna classification:reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry [J]. Histopathology, 2009, 54 (6): 699-712.

[25] ZHAO Y, WANG F, SHAN S, et al. Genetic polymorphism of p53, but not GSTP1, is association with susceptibility to esophageal cancer risk-a meta-analysis [J]. Int J Med Sci, 2010, 7 (5): 300-308.

[26] YUN Y X, WANG Y P, WANG P, et al. CYP1A1 genetic polymorphisms and risk for esophageal cancer: a case-control study in central China [J]. Asian Pac J Cancer Prev, 2014, 14 (11): 6507-6512.

[27] SUN Z, JI N, BI M M, et al. Negative expression of PTEN identifies high risk for lymphatic-related metastasis in human esophageal squamous cell carcinoma [J]. Oncol Rep, 2015, 33 (6): 3024-3032.

[28] SONG B, CUI H Y, LI Y P, et al. Mutually exclusive mutations in NOTCH1 and PIK3CA associated with clinical prognosis and chemotherapy responses of esophageal squamous cell carcinoma in China[J]. Oncotarget, 2016, 7 (3): 3599-3613.

[29] HOU J, JIANG D X, ZHANG J, et al. Frequency, characterization, and prognostic analysis of PIK3CA gene mutations in Chinese esophageal squamous cell carcinoma [J]. Hum Pathol, 2014, 45 (2): 352-358.

[30] WEI B, HAN Q, XU L J, et al. Effects of JWA, XRCC1 and BRCA1 mRNA expression on molecular staging for personalized therapy in patients with advanced esophageal squamous cell carcinoma [J].BMC Cancer, 2015 (15): 331-336.

[31] WEN L, HU Y Y, YANG G L, et al. CCND1 G870A polymorphism contributes to the risk of esophageal cancer: an updated systematic review and cumulative meta-analysis [J]. Biomed Rep, 2014, 2 (4): 549-554.

[32] MAZZUCA F, BORRO M, BOTTICELLI A, et al. Effect of MTHFR polymorphisms on astrointestinal cancer risk in Italy [J]. World J Oncol, 2015, 6 (4): 394-397.

[33] 周保林.食管癌患者血清D-二聚体与肿瘤标志物联合检测的临床意义[D].郑州:郑州大学,2018.

[34] 皇甫明美.EZH2、Bmi-1、P16、IMP-1和Survivin自身抗体在多种肿瘤中表达变化的研究[D].长春:吉林大学,2016.

[35] ZHANG Y, LI C, CHEN M. Prognostic value of immunohistochemical factors in esophageal small cell carcinoma (ESCC): analysis of clinicopathologic features of 73 patients [J]. J Thorac Dis, 2018, 10 (7): 4023-4031.

[36] 郑雨佳,杨惠云,吴倩,等.Tim-3在食管癌患者T细胞表面的表达及其临床意义[J].中国肿瘤生物治疗杂志,2019,26(3):312-316.

[37] 吴亮,李闻,郭明洲.抑癌基因启动子区甲基化在食管鳞状细胞癌诊断、治疗和预后中的应用价值[J].胃肠病学和肝病学杂志,2014,23(4):361-364.

[38] COTTRELL S E. Molecular diagnostic applications of DNA methylation technology [J]. Clin Biochem, 2004, 37 (7): 595-604.

[39] 王凡,谢新纪,朴颖实,等.食管鳞癌和反流性食管炎中p16和hmlh1基因甲基化的探讨[J].中华病理学杂志,2011,40(8):537-541.

[40] JIN Z, ZHAO Z, CHENG Y, et al. Endoglin promoter hypermethylation identifies a field defect in human primary esophageal cancer [J]. Cancer, 2013, 119 (20): 3604-3609.

[41] GUO M, REN J, BROCK M V, et al. Promoter methylation of hin-1 in the progression to esophageal squamous cancer [J]. Epigenetics, 2008, 3 (6): 336-341.

[42] JIA Y, YANG Y, ZHAN Q, et al. Inhibition of sox17 by microRNA 141 and methylation activates the wnt signaling pathway in esophageal cancer [J]. J Mol Diagn. 2012, 14 (6): 577-585.

[43] JIN Z, OLARU A, YANG J, et al. Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer [J]. Clin Cancer Res, 2007, 13 (21): 6293-6300.

[44] 张敏.抑癌基因PLCD1在食管癌中的甲基化状态、功能研究及对患者术后生活质量、生存率的影响[D].重庆:重庆医科大学,2018.

[45] FORNAH LOVEL(拉弗).食管癌MGMT甲基化及其与环境因素的交互作用研究[D].南京:东南大学,2018.

[46] SHI X, SUN M, LIU H, et al. Long non-coding RNAs: a new frontier in the study of human diseases [J]. Cancer letters, 2013, 339 (2): 159-166.

[47] SCHMITT A M, CHANG H Y. Long noncoding RNAs in cancer pathways [J]. Cancer cell, 2016, 29 (4): 452-463.

[48] EVANS J R, FENG F Y, CHINNAIYAN A M. The bright side of dark matter: lncRNAs in cancer [J]. J Clin Invest, 2016, 126 (8): 2775-2782.

[49] HIBI K, NAKAMURA H, HIRAI A, et al. Loss of H19 imprinting in esophageal cancer [J]. Cancer Res, 1996, 56: 480-482.

[50] WU W, BHAGAT T D, YANG X, et al. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma [J]. Gastroenterology, 2013, 144 (5): 956-966.

[51] LUO H L, HUANG M D, GUO J N, et al. AFAP1-AS1 is upregulated and promotes esophageal squamous cell carcinoma cell proliferation and inhibits cell apoptosis [J]. Cancer Med, 2016, 5: 2879-2885.

[52] HUANG C, YU Z, YANG H, et al. Increased MALAT1 expression predicts poor prognosis in esophageal cancer patients [J]. Biomed Pharmacother. 2016, 83: 8-13.

[53] 何庆军.LINC01133联合酒精在食管鳞状细胞癌预后中的价值及临床意义[D].广州:广州医科大学,2018.

[54] 王彪.长链非编码RNA HOXA11-AS在食管鳞状细胞癌中的表达及意义[D].泸州:西南医科大学,2018.

[55] 尚牧禾.LncRNA-ROR作为竞争性内源RNA与人食管鳞状细胞癌关系的研究[D].南京:东南大学,2018.

[56] MA W, ZHANG C Q, DANG C X, et al. Upregulated long-non-coding RNA DLEU2 exon 9 expression was an independent indicator of unfavorable overall survival in patients with esophageal adenocarcinoma [J]. Biomed Pharmacother, 2019, 113: 108655.

[57] GUO J C, LI C Q, WANG Q Y, et al. Protein-coding genes combined with long non-coding RNAs predict prognosis in esophageal squamous cell carcinoma patients as a novel clinical multi-dimensional signature [J]. Mol Biosyst, 2016, 12 (11): 3467-3477.

[58] LI S, XU Y, SUN Z, et al. Identification of a lncRNA involved functional module for esophageal cancer subtypes [J]. Mol Biosyst, 2016, 12: 3312-3323.

[59] TONG Y S, WANG X W, ZHOU X L, et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma [J]. Mol Cancer, 2015, 14: 3.

[60] HU H B, JIE H Y, ZHENG X X. Three circulating lncRNA predict early progress of esophageal squamous cell carcinoma [J]. Cell Physiol Biochem, 2016, 40: 117-125.

[61] MAAG J L V, FISHER O M, LEVERT-MIGNON A, et al. Novel aberrations uncovered in Barrett’s esophagus and esophageal adenocarcinoma using whole transcriptome sequencing [J]. Mol Cancer Res, 2017, 15 (11): 1558-1569.

[62] YANG X, SONG J H, CHENG Y, et al. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells [J]. Gut, 2014, 63: 881-890.

[63] XIONG D D, FENG Z B, CEN W L, et al. The clinical value of lncRNA NEAT1 in digestive system malignancies: a comprehensive investigation based on 57 microarray and RNA-seq datasets [J]. Oncotarget, 2017, 8 (11): 17665-17683.

[64] 杨成梁.miR-135调控Smo基因影响食管鳞癌上皮间质转化和放疗敏感性作用及机制研究[D].郑州:郑州大学,2018.

[65] 刘梦歆.食管癌相关新miRNA的鉴定与功能的初步研究[D].南京:东南大学,2018.

[66] 陈剑峰,沈宗坤.食管癌中miR-203和miR-21的表达水平及临床意义[J].检验医学与临床,2018,15(12):1770-1773.

[67] LIN X F, ZHANG C Q, DONG B R. MiR-421 expression independently predicts unfavorable overall survival in patients with esophageal adenocarcinoma [J]. Eur Rev Med Pharmacol Sci, 2019, 23 (9):3790-3798.

[68] YANG F R, LI H J, LI T T, et al. Prognostic value of microRNA-15a in human cancers: a meta-analysis and bioinformatics [J]. Biomed Res Int, 2019, 2019: 2063823.

[69] HONG H, LIU T, WU H, et al. MicroRNA-550a is associated with muscle system conferring poorer survival for esophageal cancer [J]. Biosci Rep, 2019, 39 (5) BSR20181173.

[70] LIU M X, LIAO J, XIE M, et al. miR-93-5p transferred by exosomes promotes the proliferation of esophageal cancer cells via intercellular communication by targeting PTEN [J]. Biomed Environ Sci, 2018, 31 (3): 171-185.

[71] LIU W, LI M, CHEN X, et al. MicroRNA-373 promotes migration and invasion in human esophageal squamous cell carcinoma by inhibiting TIMP3 expression [J]. Am J Cancer Res, 2015, 6 (1): 1-14.

[72] BUS P, KESTENS C, TEN KATE F J, et al. Profiling of circulating microRNAs in patients with Barrett’s esophagus and esophageal adenocarcinoma [J]. J Gastroenterol, 2016, 51: 560-570.

[73] GAO Z, LIU R, LIAO J. Possible tumor suppressive role of the miR-144/451 cluster in esophageal carcinoma as determined by principal component regression analysis [J]. Mol Med Rep, 2016, 14 (4):3805-3813.

[74] WANG W, MA J, LU J, et al. Circ0043898 acts as a tumor inhibitor and performs regulatory effect on the inhibition of esophageal carcinoma [J]. Cancer Biol Ther, 2018, 19 (12): 1117-1127.

[75] SONG H, XU D, SHI P, et al. Upregulated circRNA hsa_circ_0000337 promotes cell proliferation,migration, and invasion of esophageal squamous cell carcinoma [J]. Cancer Manag Res, 2019, 11:1997-2006.

[76] SHI N, SHAN B, GU B, et al. Circular RNA circ-PRKCI functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-3680-3p in esophageal squamous cell carcinoma [J]. J Cell Biochem, 2019, 120 (6): 10021-10030.

[77] CHEN X, CAI S, LI B, et al. Identification of key genes and pathways for esophageal squamous cell carcinoma by bioinformatics analysis [J]. Exp Ther Med, 2018, 16 (2): 1121-1130.

[78] WANG X, LI G, LUO Q, et al. Identification of crucial genes associated with esophageal squamous cell carcinoma by gene expression profile analysis [J]. Oncol Lett, 2018, 15 (6): 8983-8990.

[79] LIU D, XU X, WEN J, et al. Integrated genome-wide analysis of gene expression and DNA copy number variations highlights stem cell-related pathways in small cell esophageal carcinoma [J]. Stem Cells Int, 2018, 2018: 3481783.

[80] 何思源,王小兵,焦宇辰.基于肿瘤基因图谱计划挖掘食管鳞癌数据[J].中华肿瘤杂志,2018,40(7):517-522.

[81] FANG Q, HUI L, MIN Z, et al. Leukocyte telomere length-related genetic variants in ACYP2 contribute to the risk of esophageal carcinoma in Chinese Han population [J]. Oncotarget, 2017, 8 (15):25564-25570.

[82] NICHOLSON J K, LIDON J C, HOLMES E. Metabonomics: understanding the metabolic response of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenbiotica, 1999, 29 (11): 1181-1189.

[83] DAVIS V W, SCHILLER D E, EURICH D, et al. Urinary metabolomic signature of esophageal cancer and Barrett’s esophagus [J]. World J Surg Oncol, 2012, 10: 271.

[84] ZHANG H, WANG L, HOU Z, et al. Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform [J]. Biochemical and biophysical research communications, 2017, 491 (1): 119-125.

[85] ZHANG X, XU L, SHEN J, et al. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum [J]. Biochim Biophys Acta, 2013, 1832: 1207-1216.

[86] MA H, HASIM A, MAMTIMIN B, et al. Plasma free amino acid profiling of esophageal cancer using high-performance liquid chromatography spectroscopy [J]. World J Gastroenterol, 2014, 20: 8653-8659.

[87] YANG Y, WANG L, WANG S, et al. Study of metabonomic profiles of human esophageal carcinoma by use of high-resolution magic-angle spinning 1 H NMR spectroscopy and multivariate data analysis[J]. Anal Bioanal Chem, 2013, 405 (10): 3381-3389.

[88] 杨永霞,梁敏锋,陈阿丽,等.应用核磁共振代谢组学方法分析食管癌患者血清代谢物[J].江苏医药,2010,36(16):1867-1868.

[89] 于莲珍.消化道肿瘤(胃癌、食管癌)的代谢特征和代谢标志物的研究[D].南京:南京医科大学,2012.

[90] ABBASSI-GHADI N, KUMAR S, HUANG J, et al. Metabolomic profiling of esophago-gastric cancer: a systematic review [J]. Eur J Cancer, 2013, 49 (17): 3625-3637.

[91] MIR S A, RAJAGOPALAN P, JAIN A P, et al. LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma [J]. J Proteomics, 2015, 127 (Pt A): 96-102.

[92] SANCHEZ-ESPIRIDION B, LIANG D, AJANI J A, et al. Identification of serum markers of esophageal adenocarcinoma by global and targeted metabolic profiling [J]. Clin Gastroenterol Hepatol, 2015, 13 (10): 1730-1737.

[93] WANG J, ZHANG T, SHEN X, et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS [J]. Metabolomics, 2016, 12 (7): 116.

[94] BUAS M F, GU H, DJUKOVIC D, et al. Candidate serum metabolite biomarkers for differentiating gastroesophageal reflux disease, Barrett’s esophagus, and high-grade dysplasia/esophageal adenocarcinoma [J]. Metabolomics, 2017, 13 (3): 12.

[95] 李江硕.基于LC-MS技术的食管癌血浆代谢组学研究[C].中国化学会.第21届全国色谱学术报告会及仪器展览会会议论文集.北京:中国化学会,2017:2.

[96] YANG Z, LIU Y, MA L, et al. Exploring potential biomarkers of early stage esophageal squamous cell carcinoma in pre-and post-operative serum metabolomic fingerprint spectrum using 1 H-NMR method[J]. Am J Transl Res, 2019, 11 (2): 819-831.

[97] LIANG J H, LIN Y, OUYANG T, et al. Nuclear magnetic resonance-based metabolomics and metabolic pathway networks from patient-matched esophageal carcinoma, adjacent noncancerous tissues and urine [J]. World J Gastroenterol, 2019, 25 (25): 3218-3230.

[98] 李晓静,孙妞妞,李秀敏.不同生存期食管鳞癌患者载脂蛋白D表达水平的研究[J].中国肿瘤临床,2018,45(20):1044-1048.

[99] 赵云岗,张天,谷娟,等.iTRAQ联用串联质谱鉴定食管鳞状细胞癌差异表达蛋白质及蛋白质相互作用网络[J].中国生物化学与分子生物学学报,2016,32(1):85-92.

[100] 张浩亮.食管鳞状细胞癌血浆外泌体肿瘤标志物的蛋白质组学筛选及验证[D].郑州:郑州大学,2018.

[101] 赵佳.食管鳞状细胞癌血浆肿瘤标志物的蛋白质组学筛选及验证[D].郑州:郑州大学,2016.

[102] 张艳.食管鳞状细胞癌差异蛋白的筛选及其临床意义研究[D].乌鲁木齐:新疆医科大学,2015.

[103] 王雪芬.Wnt/ β -catenin信号通路相关蛋白在食管癌细胞株的表达及研究[D].乌鲁木齐:新疆医科大学,2017.

[104] YAZDIAN-ROBATI R, AHMADI H, RIAHI M M, et al. Comparative proteome analysis of human esophageal cancer and adjacent normal tissues [J]. Iran J Basic Med Sci, 2017, 20 (3): 265-271.

(秦治初 蔡洁毅 谢文瑞) bAhNvXOe0GOKoP1edK1cw42iXwlQSiHsT95uwkbGF1YGVNJM1jsUdwKPo1bjFICm

点击中间区域
呼出菜单
上一章
目录
下一章
×