购买
下载掌阅APP,畅读海量书库
立即打开
畅读海量书库
扫码下载掌阅APP

参考文献

[1] SANDHOLM N, VAN ZUYDAM N, AHLQVIST E, et al. The genetic landscape of renal complications in type 1 diabetes [J]. J Am Soc Nephrol, 2017, 28 (2): 557-574.

[2] POCIOT F, LERNMARK Å. Genetic risk factors for type 1 diabetes [J]. Lancet, 2016, 387 (10035): 2331-2339.

[3] HU X, DEUTSCH A J, LENZ T L, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk [J]. Nat Genet, 2015, 47 (8): 898-905.

[4] MARIA T, IOANNIS S, KONSTANTINOS S, et al. Identification of chromosomal regions linked to diabetic nephropathy: a meta-analysis of genome-wide linkage scans [J]. Genet Test Mol Biomarkers, 2019, 23 (2): 1 05-117.

[5] SHI J, LIU Y, LIU Y, et al. Association between ApoE polymorphism and hypertension: A meta-analysis of 28 studies incLUding 5898 cases and 7518 controls [J]. Gene, 2018, 675: 197-207.

[6] CHANG A S, HATHAWAY C K, SMITHIES O, et al. Transforming growth factor β1 and diabetic nephropathy [J]. Am J Physiol Renal Physiol, 2016, 310 (8): F689-F696.

[7] WANG Y, ZHANG J, ZHAO Y, et al. COL4A3 Gene Variants and diabetic kidney disease in MODY [J]. Clin J Am Soc Nephrol, 2018, 13 (8): 1162-1171.

[8] WILLIAMS S M, IYENGAR S K, SEDOR J R, et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: family investigation of nephropathy and diabetes (FIND)[J]. PLoS Genet, 2015, 11 (8): e1005352.

[9] VAN ZUYDAM N R, AHLQVIST E, SANDHOLM N, et al. A Genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes [J]. Diabetes, 2018, 67 (7): 1414-1427.

[10] GERMAIN M, PEZZOLESI MG, SANDHOLM N, et al. SORBS1 gene, a new candidate for diabetic nephropathy: results from a multi-stage genome-wide association study in patients with type 1 diabetes [J]. Diabetologia, 2015, 58 (3): 543-548.

[11] VAN ZUYDAM N R, AHLQVIST E, SANDHOLM N, et al. A Genome-Wide association study of diabetic kidney disease in subjects with type 2 diabetes [J]. Diabetes, 2018, 67: 1414-1427.

[12] ALLIS C D, JENUWEIN T. The molecular hallmarks of epigenetic control [J]. Nat Rev Genet,2016, 17 (8): 487-500.

[13] KATO M, NATARAJAN R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory [J]. Nat Rev Nephrol, 2019, 15 (6): 327-345.

[14] ZHANG L, ZHANG Q, LIU S, et al. DNA methyltransferase 1 may be a therapy target for attenuating diabetic nephropathy and podocyte injury [J]. Kidney Int, 2017, 92 (1): 140-153.

[15] REDDY M A, ZHANG E, NATARAJAN R. Epigenetic mechanisms in diabetic complications and metabolic memory [J]. Diabetologia, 2015, 58 (3): 443-455.

[16] MARUMO T, YAGI S, KAWARAZAKI W, et al. Diabetes, Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney [J]. J Am Soc Nephrol, 2015, 26 (10): 2388-2397.

[17] GLUCK C, QIU C, HAN S Y, et al. Kidney cytosine methylation changes improve renal function decline estimation in patients with diabetic kidney disease [J]. Nat Commun, 2019, 10 (1): 2461.

[18] MIAO F, CHEN Z, GENUTH S, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes [J]. Diabetes, 2014, 63 (5): 1748-1762.

[19] LAI JY, LUO J, O’CONNOR C, et al. MicroRNA-21 in glomerular injury [J]. J Am Soc Nephrol, 2015,26 (4): 805-816.

[20] ZHAO B, LI H, LIU J, et al. MicroRNA-23b Targets ras gtpase-activating protein sh3 domainbinding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy [J]. J Am Soc Nephrol, 2016, 27 (9): 2597-2608.

[21] BHATT K, LANTING L L, JIA Y, et al. Anti-inflammatory role of microrna-146a in the pathogenesis of diabetic nephropathy [J]. J Am Soc Nephrol, 2015, 27 (8): 2277-2288.

[22] WANG X, XU Y, ZHU Y-C, et al. LncRNA NEAT1 promotes extracellular matrix accumulation and epithelial-to-mesenchymal transition by targeting miR-27b-3p and ZEB1 in diabetic nephropathy [J]. J Cell Physiol, 2019, 234 (8): 12926-12933.

[23] LI X, ZENG L, CAO C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy [J]. Exp Cell Res, 2017, 350 (2): 327-335.

[24] HU M, WANG R, LI X, et al. LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with β-catenin [J]. J Cell Mol Med, 2017, 21 (11): 2732-2747.

[25] KATO M, WANG M, CHEN Z, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megac induces early features of diabetic nephropathy [J]. Nat Commun, 2016, 7: 12864.

[26] GU HF. Genetic and epigenetic studies in diabetic kidney disease [J]. Front Genet, 2019, 10: 507. mNPK98nK7e2mOZtegB4vxOA3w1r68BJzZzMxpXenfy8RU7xuTCZxO46acu8gZXLB

点击中间区域
呼出菜单
上一章
目录
下一章
×

打开